This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154986-Thumbnail Image.png
Description
A lot of strides have been made in enabling technologies to aid individuals with visual impairment live an independent life. The advent of smart devices and participatory web has especially facilitated the possibility of new interactions to aide everyday tasks. Current systems however tend to be complex and require multiple

A lot of strides have been made in enabling technologies to aid individuals with visual impairment live an independent life. The advent of smart devices and participatory web has especially facilitated the possibility of new interactions to aide everyday tasks. Current systems however tend to be complex and require multiple cumbersome devices which invariably come with steep learning curves. Building new cyber-human systems with simple integrated interfaces while keeping in mind the specific requirements of the target users would help alleviate their mundane yet significant daily needs. Navigation is one such significant need that forms an integral part of everyday life and is one of the areas where individuals with visual impairment face the most discomfort. There is little technology out there to help travelers with navigating new routes. A number of research prototypes have been proposed but none of them are available to the general population. This may be due to the need for special equipment that needs expertise before deployment, or trained professionals needing to calibrate devices or because of the fact that the systems are just not scalable. Another area that needs assistance is the field of education. Lot of the classroom material and textbook material is not readily available in alternate formats for use. Another such area that requires attention is information delivery in the age of web 2.0. Popular websites like Facebook, Amazon, etc are designed with sighted people as target audience. While the mobile editions with their pared down versions make it easier to navigate with screen readers, the truth remains that there is still a long way to go in making such websites truly accessible.
ContributorsPaladugu, Devi Archana (Author) / Li, Baoxin (Thesis advisor) / Hedgpeth, Terri (Committee member) / Atkinson, Robert (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2016
161756-Thumbnail Image.png
Description
There is intense interest in adopting computer-aided diagnosis (CAD) systems, particularly those developed based on deep learning algorithms, for applications in a number of medical specialties. However, success of these CAD systems relies heavily on large annotated datasets; otherwise, deep learning often results in algorithms that perform poorly and lack

There is intense interest in adopting computer-aided diagnosis (CAD) systems, particularly those developed based on deep learning algorithms, for applications in a number of medical specialties. However, success of these CAD systems relies heavily on large annotated datasets; otherwise, deep learning often results in algorithms that perform poorly and lack generalizability. Therefore, this dissertation seeks to address this critical problem: How to develop efficient and effective deep learning algorithms for medical applications where large annotated datasets are unavailable. In doing so, we have outlined three specific aims: (1) acquiring necessary annotations efficiently from human experts; (2) utilizing existing annotations effectively from advanced architecture; and (3) extracting generic knowledge directly from unannotated images. Our extensive experiments indicate that, with a small part of the dataset annotated, the developed deep learning methods can match, or even outperform those that require annotating the entire dataset. The last part of this dissertation presents the importance and application of imaging in healthcare, elaborating on how the developed techniques can impact several key facets of the CAD system for detecting pulmonary embolism. Further research is necessary to determine the feasibility of applying these advanced deep learning technologies in clinical practice, particularly when annotation is limited. Progress in this area has the potential to enable deep learning algorithms to generalize to real clinical data and eventually allow CAD systems to be employed in clinical medicine at the point of care.
ContributorsZhou, Zongwei (Author) / Liang, Jianming (Thesis advisor) / Shortliffe, Edward H (Committee member) / Greenes, Robert A (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2021