This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155059-Thumbnail Image.png
Description
The tradition of building musical robots and automata is thousands of years old. Despite this rich history, even today musical robots do not play with as much nuance and subtlety as human musicians. In particular, most instruments allow the player to manipulate timbre while playing; if a violinist is told

The tradition of building musical robots and automata is thousands of years old. Despite this rich history, even today musical robots do not play with as much nuance and subtlety as human musicians. In particular, most instruments allow the player to manipulate timbre while playing; if a violinist is told to sustain an E, they will select which string to play it on, how much bow pressure and velocity to use, whether to use the entire bow or only the portion near the tip or the frog, how close to the bridge or fingerboard to contact the string, whether or not to use a mute, and so forth. Each one of these choices affects the resulting timbre, and navigating this timbre space is part of the art of playing the instrument. Nonetheless, this type of timbral nuance has been largely ignored in the design of musical robots. Therefore, this dissertation introduces a suite of techniques that deal with timbral nuance in musical robots. Chapter 1 provides the motivating ideas and introduces Kiki, a robot designed by the author to explore timbral nuance. Chapter 2 provides a long history of musical robots, establishing the under-researched nature of timbral nuance. Chapter 3 is a comprehensive treatment of dynamic timbre production in percussion robots and, using Kiki as a case-study, provides a variety of techniques for designing striking mechanisms that produce a range of timbres similar to those produced by human players. Chapter 4 introduces a machine-learning algorithm for recognizing timbres, so that a robot can transcribe timbres played by a human during live performance. Chapter 5 introduces a technique that allows a robot to learn how to produce isolated instances of particular timbres by listening to a human play an examples of those timbres. The 6th and final chapter introduces a method that allows a robot to learn the musical context of different timbres; this is done in realtime during interactive improvisation between a human and robot, wherein the robot builds a statistical model of which timbres the human plays in which contexts, and uses this to inform its own playing.
ContributorsKrzyzaniak, Michael Joseph (Author) / Coleman, Grisha (Thesis advisor) / Turaga, Pavan (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
187831-Thumbnail Image.png
Description
This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize

This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize a decent basketball shot pattern? - by introducing a supervised learning paradigm, where the ML method takes acceleration attributes to predict the basketball shot efficiency. The solution presented in this study considers motion capture devices configuration on the right upper limb with a sole motion sensor made by BNO080 and ESP32 attached on the right wrist, right forearm, and right shoulder, respectively, By observing the rate of speed changing in the shooting movement and comparing their performance, ML models that apply K-Nearest Neighbor, and Decision Tree algorithm, conclude the best range of acceleration that different spots on the arm should implement.
ContributorsLiang, Chengxu (Author) / Ingalls, Todd (Thesis advisor) / Turaga, Pavan (Thesis advisor) / De Luca, Gennaro (Committee member) / Arizona State University (Publisher)
Created2023