This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
149431-Thumbnail Image.png
Description
Silicon carbide (SiC), long touted as a material that can satisfy the specific property requirements for high temperature and high power applications, was studied quantitatively using various techniques. The electronic band structure of 4H SiC is examined in the first half of this dissertation. A brief introduction to band structure

Silicon carbide (SiC), long touted as a material that can satisfy the specific property requirements for high temperature and high power applications, was studied quantitatively using various techniques. The electronic band structure of 4H SiC is examined in the first half of this dissertation. A brief introduction to band structure calculations, with particular emphasis on the empirical pseudopotential method, is given as a foundation for the subsequent work. Next, the crystal pseudopotential for 4H SiC is derived in detail, and a novel approach using a genetic algorithm search routine is employed to find the fitting parameters needed to generate the band structure. Using this technique, the band structure is fitted to experimentally measured energy band gaps giving an indirect band gap energy of 3.28 eV, and direct f¡, M, K and L energy transitions of 6.30, 4.42, 7.90 and 6.03 eV, respectively. The generated result is also shown to give effective mass values of mMf¡*=0.66m0, mMK*=0.31m0, mML*=0.34m0, in close agreement with experimental results. The second half of this dissertation discusses computational work in finding the electron Hall mobility and Hall scattering factor for 6H SiC. This disscussion begins with an introductory chapter that gives background on how scattering rates are dervied and the specific expressions for important mechanisms. The next chapter discusses mobility calculations for 6H SiC in particular, beginnning with Rode's method to solve the Boltzmann transport equation. Using this method and the transition rates of the previous chapter, an acoustic deformation potential DA value of 5.5 eV, an inter-valley phonon deformation potential Dif value of 1.25~1011 eV/m and inter-valley phonon energy ℏfÖif of 65 meV that simultaneously fit experimental data on electron Hall mobility and Hall scattering factor was found.
ContributorsNg, Garrick (Author) / Schroder, Dieter K. (Thesis advisor) / Vasileska, Dragica (Committee member) / Skromme, Brian (Committee member) / Alford, Terry (Committee member) / Marinella, Matthew (Committee member) / Arizona State University (Publisher)
Created2010