This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

157064-Thumbnail Image.png
Description
In order to meet climate targets, the solar photovoltaic industry must increase photovoltaic (PV) deployment and cost competitiveness over its business-as-usual trajectory. This requires more efficient PV modules that use less expensive materials, and longer operational lifetime. The work presented here approaches this challenge with a novel metallization method for

In order to meet climate targets, the solar photovoltaic industry must increase photovoltaic (PV) deployment and cost competitiveness over its business-as-usual trajectory. This requires more efficient PV modules that use less expensive materials, and longer operational lifetime. The work presented here approaches this challenge with a novel metallization method for solar PV and electronic devices.

This document outlines work completed to this end. Chapter 1 introduces the areas for cost reductions and improvements in efficiency to drive down the cost per watt of solar modules. Next, in Chapter 2, conventional and advanced metallization methods are reviewed, and our proposed solution of dispense printed reactive inks is introduced. Chapter 3 details a proof of concept study for reactive silver ink as front metallization for solar cells. Furthermore, Chapter 3 details characterization of the optical and electrical properties of reactive silver ink metallization, which is important to understanding the origins of problems related to metallization, enabling approaches to minimize power losses in full devices. Chapter 4 describes adhesion and specific contact resistance of reactive ink metallizations on silicon heterojunction solar cells. Chapter 5 compares performance of silicon heterojunction solar cells with front grids formed from reactive ink metallization and conventional, commercially available metallization. Performance and degradation throughout 1000 h of accelerated environmental exposure are described before detailing an isolated corrosion experiment for different silver-based metallizations. Finally, Chapter 6 summarizes the main contributions of this work.

The major goal of this project is to evaluate potential of a new metallization technique –high-precision dispense printing of reactive inks–to become a high efficiency replacement for solar cell metallization through optical and electrical characterization, evaluation of durability and reliability, and commercialization research. Although this work primarily describes the application of reactive silver inks as front-metallization for silicon heterojunction solar cells, the work presented here provides a framework for evaluation of reactive inks as metallization for various solar cell architectures and electronic devices.
ContributorsJeffries, April M (Author) / Bertoni, Mariana I (Thesis advisor) / Saive, Rebecca (Committee member) / Holman, Zachary (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2019
157793-Thumbnail Image.png
Description
Interconnection methods for IBC photovoltaic (PV) module integration have widely been explored yet a concrete and cost-effective solution has yet to be found. Traditional methods of tabbing and stringing which are still being used today impart increased stress on the cells, not to mention the high temperatures induced during the

Interconnection methods for IBC photovoltaic (PV) module integration have widely been explored yet a concrete and cost-effective solution has yet to be found. Traditional methods of tabbing and stringing which are still being used today impart increased stress on the cells, not to mention the high temperatures induced during the soldering process as well. In this work and effective and economical interconnection method is demonstrated, by laser welding an embossed aluminum (Al) electrode layer to screen-printed silver (Ag) on the solar cell. Contact resistivity below 1mΩ.cm2 is measured with the proposed design. Cross-sectional analysis of interfaces is conducted via Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS) methods. Typical laser weld phenomenon observed involves Al ejection at the entrance of the weld, followed by Al and Ag fusing together mid-way through the weld spot, as revealed by cross-sectional depth analysis. The effects of voltage and lamp intensity are also tested on the welding process. With the range of voltages tested, 240V seems to show the least process variability and the most uniform contact between Al and Ag layers, upon using an Ethylene-Vinyl Acetate (EVA) encapsulant. Two lamp intensities were also explored with a Polyolefin (POE) encapsulant with Al and Ag layers seen welded together as well. Smaller effect sizes at lamp 2 intensity showed better contact. A process variability analysis was conducted to understand the effects of the two different lamps on welds being formed. Lamp 2 showed a bi-modal size distribution with a higher peak intensity, with more pulses coupling into the sample, as compared to lamp 1.
ContributorsSukumar Mony, Sujyot (Author) / Holman, Zachary (Thesis advisor) / Alford, Terry (Committee member) / Yu, Zhengshan (Committee member) / Arizona State University (Publisher)
Created2019