This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150870-Thumbnail Image.png
Description
Soft magnetic alloys play a significant role for magnetic recording applications and highly sensitivity magnetic field sensors. In order to sustain the magnetic areal density growth, development of new synthesis techniques and materials is necessary. In this work, the effect of oxygen incorporation during electrodeposition of CoFe alloys on magnetic

Soft magnetic alloys play a significant role for magnetic recording applications and highly sensitivity magnetic field sensors. In order to sustain the magnetic areal density growth, development of new synthesis techniques and materials is necessary. In this work, the effect of oxygen incorporation during electrodeposition of CoFe alloys on magnetic properties, magnetoresistance and structural properties has been studied. Understanding the magnetic properties often required knowledge of oxygen distribution and structural properties of the grown films. Transmission electron microscopy (TEM) was a powerful tool in this study to correlate the oxygen-distribution nanostructure to the magnetic properties of deposited films. Off-axis electron holography in TEM was used to measure magnetic domain wall width in the deposited films. Elemental depth profiles of Fe, Co, O were investigated by secondary ion mass spectroscopy (SIMS). Magnetic properties have been determined by superconducting quantum interference device (SQUID) measurements. Oxygen content in the CoFe deposited films was controlled by electrolyte composition. Films were deposited on Si 100 substrates and on other substrates such as Cu and Al. However, a good film quality was achieved on Si substrate. Electron energy loss and x-ray spectroscopies showed that the low oxygen films contained intragranular Fe2+ oxide (FeO) particles and that the high oxygen films contained intergranular Fe3+ (Fe2O3) along grain boundaries. The films with oxide present at the grain boundary had significantly increased coercivity, magnetoresistance and reduced saturation magnetization relative to the lower oxygen content films with intragranular oxide. The differences in magnetic properties between low oxygen and high oxygen concentration films were attributed to stronger mobile domain wall interactions with the grain boundary oxide layers. The very high magnetoresistance values were achieved for magnetic devices with nanocontact dimension < 100 nm and oxide incorporation in this nanoconfined geometry. The content of oxide phase in nanocontact was controlled by concentration of the Fe3+ ions in the electrodeposition solution. Magnetic device integrity was improved by varying amount of additive into plating solution. These results indicated that electrodeposited CoFe nanocontact is a novel class of materials with large application for magnetic field sensors.
ContributorsElhalawaty, Shereen (Author) / Carpenter, Ray (Thesis advisor) / Chamberlin, Ralph (Committee member) / McCartney, Martha (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2012
158761-Thumbnail Image.png
Description
Global industrialization and urbanization have led to increased levels of air pollution. The costs to society have come in the form of environmental damage, healthcare expenses, lost productivity, and premature mortality. Measuring pollutants is an important task for identifying its sources, warning individuals about dangerous exposure levels, and providing epidemiologists

Global industrialization and urbanization have led to increased levels of air pollution. The costs to society have come in the form of environmental damage, healthcare expenses, lost productivity, and premature mortality. Measuring pollutants is an important task for identifying its sources, warning individuals about dangerous exposure levels, and providing epidemiologists with data to link pollutants with diseases. Current methods for monitoring air pollution are inadequate though. They rely on expensive, complex instrumentation at limited fixed monitoring sites that do not capture the true spatial and temporal variation. Furthermore, the fixed outdoor monitoring sites cannot warn individuals about indoor air quality or exposure to chemicals at worksites. Recent advances in manufacturing and computing technology have allowed new classes of low-cost miniature gas sensor to emerge as possible alternatives. For these to be successful however, there must be innovations in the sensors themselves that improve reliability, operation, and their stability and selectivity in real environments. Three novel gas sensor solutions are presented. The first is the development of a wearable personal exposure monitor using all commercially available components, including two metal oxide semiconductor gas sensors. The device monitors known asthma triggers: ozone, total volatile organic compounds, temperature, humidity, and activity level. Primary focus is placed on the ozone sensor, which requires special circuits, heating algorithm, and calibration to remove temperature and humidity interferences. Eight devices are tested in multiple field tests. The second is the creation of a new compact optoelectronic gas sensing platform using colorimetric microdroplets printed on the surface of a complementary-metal-oxide-semiconductor (CMOS) imager. The nonvolatile liquid microdroplets provide a homogeneous, uniform environment that is ideal for colorimetric reactions and lensless optical measurements. To demonstrate one type of possible indicating system gaseous ammonia is detected by complexation with Cu(II). The third project continues work on the CMOS imager optoelectronic platform and develops a more robust sensing system utilizing hydrophobic aerogel particles. Ammonia is detected colorimetrically by its reaction with a molecular dye, with additives and surface treatments enhancing uniformity of the printed films. Future work presented at the end describes a new biological particle sensing system using the CMOS imager.
ContributorsMallires, Kyle Reed (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Thesis advisor) / Wiktor, Peter (Committee member) / Wang, Di (Committee member) / Alford, Terry (Committee member) / Xian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2020