This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 123
151690-Thumbnail Image.png
Description
Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems.

Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems. In particular, the focus is on an information theoretic analysis for P2P systems with synchronization errors and developing new signaling solutions for several asynchronous cooperative communication systems. The first part of the dissertation presents several bounds on the capacity of the P2P systems with synchronization errors. First, binary insertion and deletion channels are considered where lower bounds on the mutual information between the input and output sequences are computed for independent uniformly distributed (i.u.d.) inputs. Then, a channel suffering from both synchronization errors and additive noise is considered as a serial concatenation of a synchronization error-only channel and an additive noise channel. It is proved that the capacity of the original channel is lower bounded in terms of the synchronization error-only channel capacity and the parameters of both channels. On a different front, to better characterize the deletion channel capacity, the capacity of three independent deletion channels with different deletion probabilities are related through an inequality resulting in the tightest upper bound on the deletion channel capacity for deletion probabilities larger than 0.65. Furthermore, the first non-trivial upper bound on the 2K-ary input deletion channel capacity is provided by relating the 2K-ary input deletion channel capacity with the binary deletion channel capacity through an inequality. The second part of the dissertation develops two new relaying schemes to alleviate asynchronism issues in cooperative communications. The first one is a single carrier (SC)-based scheme providing a spectrally efficient Alamouti code structure at the receiver under flat fading channel conditions by reducing the overhead needed to overcome the asynchronism and obtain spatial diversity. The second one is an orthogonal frequency division multiplexing (OFDM)-based approach useful for asynchronous cooperative systems experiencing excessive relative delays among the relays under frequency-selective channel conditions to achieve a delay diversity structure at the receiver and extract spatial diversity.
ContributorsRahmati, Mojtaba (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2013
152193-Thumbnail Image.png
Description
Global Positioning System (GPS) is a navigation system widely used in civilian and military application, but its accuracy is highly impacted with consequential fading, and possible loss of communication due to multipath propagation and high power interferences. This dissertation proposes alternatives to improve the performance of the GPS receivers to

Global Positioning System (GPS) is a navigation system widely used in civilian and military application, but its accuracy is highly impacted with consequential fading, and possible loss of communication due to multipath propagation and high power interferences. This dissertation proposes alternatives to improve the performance of the GPS receivers to obtain a system that can be reliable in critical situations. The basic performance of the GPS receiver consists of receiving the signal with an antenna array, delaying the signal at each antenna element, weighting the delayed replicas, and finally, combining the weighted replicas to estimate the desired signal. Based on these, three modifications are proposed to improve the performance of the system. The first proposed modification is the use of the Least Mean Squares (LMS) algorithm with two variations to decrease the convergence time of the classic LMS while achieving good system stability. The results obtained by the proposed LMS demonstrate that the algorithm can achieve the same stability as the classic LMS using a small step size, and its convergence rate is better than the classic LMS using a large step size. The second proposed modification is to replace the uniform distribution of the time delays (or taps) by an exponential distribution that decreases the bit-error rate (BER) of the system without impacting the computational efficiency of the uniform taps. The results show that, for a BER of 0.001, the system can operate with a 1 to 2 dB lower signal-to-noise ratio (SNR) when an exponential distribution is used rather than a uniform distribution. Finally, the third modification is implemented in the design of the antenna array. In this case, the gain of each microstrip element is enhanced by embedding ferrite rings in the substrate, creating a hybrid substrate. The ferrite rings generates constructive interference between the incident and reflected fields; consequently, the gain of a single microstrip element is enhanced by up to 4 dB. When hybrid substrates are used in microstrip element arrays, a significant enhancement in angle range is achieved for a given reflection coefficient compared to using a conventional substrate.
ContributorsRivera-Albino, Alix (Author) / Balanis, Constantine A (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Kiaei, Sayfe (Committee member) / Aberle, James T (Committee member) / Arizona State University (Publisher)
Created2013
152198-Thumbnail Image.png
Description
The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters

The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters from human auditory models, such as auditory patterns and loudness, involves computationally intensive operations which can strain device resources. Hence, strategies for implementing computationally efficient human auditory models for loudness estimation have been studied in this thesis. Existing algorithms for reducing computations in auditory pattern and loudness estimation have been examined and improved algorithms have been proposed to overcome limitations of these methods. In addition, real-time applications such as perceptual loudness estimation and loudness equalization using auditory models have also been implemented. A software implementation of loudness estimation on iOS devices is also reported in this thesis. In addition to the loudness estimation algorithms and software, in this thesis project we also created new illustrations of speech and audio processing concepts for research and education. As a result, a new suite of speech/audio DSP functions was developed and integrated as part of the award-winning educational iOS App 'iJDSP." These functions are described in detail in this thesis. Several enhancements in the architecture of the application have also been introduced for providing the supporting framework for speech/audio processing. Frame-by-frame processing and visualization functionalities have been developed to facilitate speech/audio processing. In addition, facilities for easy sound recording, processing and audio rendering have also been developed to provide students, practitioners and researchers with an enriched DSP simulation tool. Simulations and assessments have been also developed for use in classes and training of practitioners and students.
ContributorsKalyanasundaram, Girish (Author) / Spanias, Andreas S (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2013
152131-Thumbnail Image.png
Description
The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research

The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research efforts to study these vitally important systems. Expected outcomes from easily accessible test environments and more tractable studies include the development of more advanced and adaptive material systems, including biological systems, particularly as humans ponder human exploration in deep space. The specific focus of the research was the design and development of a prototypical experimental test system that could preliminarily meet the challenging design specifications required of such test systems. Guided by a more unified theoretical foundation and building upon concept design and development heuristics, assessment of the feasibility of two experimental test systems was explored. Test System I was a rotating wall reactor experimental system that closely followed the specifications of a similar test system, Synthecon, designed by NASA contractors and thus closely mimicked microgravity conditions of the space shuttle and station. The latter includes terminal velocity conditions experienced by both innate material systems, as well as, biological systems, including living tissue and humans but has the ability to extend to include those material test systems associated with mineralization processes. Test System II is comprised of a unique vertical column design that offered more easily controlled fluid mechanical test conditions over a much wider flow regime that was necessary to achieving terminal velocities under free convection-less conditions that are important in mineralization processes. Preliminary results indicate that Test System II offers distinct advantages in studying microgravity effects in test systems operating in unit gravity environments and particularly when investigating mineralization and related processes. Verification of the Test System II was performed on validating microgravity effects on calcite mineralization processes reported earlier others. There studies were conducted on calcite mineralization in fixed-wing, reduced gravity aircraft, known as the `vomit comet' where reduced gravity conditions are include for very short (~20second) time periods. Preliminary results indicate that test systems, such as test system II, can be devised to assess microgravity conditions in unit gravity environments, such as earth. Furthermore, the preliminary data obtained on calcite formation suggest that strictly physicochemical mechanisms may be the dominant factors that control adaptation in materials processes, a theory first proposed by Liu et al. Thus the result of this study may also help shine a light on the problem of early osteoporosis in astronauts and long term interest in deep space exploration.
ContributorsSeyedmadani, Kimia (Author) / Pizziconi, Vincent (Thesis advisor) / Towe, Bruce (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2013
152154-Thumbnail Image.png
Description
As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell

As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell surfaces. The focus of this work is to understand the properties of charges present in the SiNx films and then to develop a mechanism to manipulate the polarity of charges to either negative or positive based on the end-application. Specific silicon-nitrogen dangling bonds (·Si-N), known as K center defects, are the primary charge trapping defects present in the SiNx films. A custom built corona charging tool was used to externally inject positive or negative charges in the SiNx film. Detailed Capacitance-Voltage (C-V) measurements taken on corona charged SiNx samples confirmed the presence of a net positive or negative charge density, as high as +/- 8 x 1012 cm-2, present in the SiNx film. High-energy (~ 4.9 eV) UV radiation was used to control and neutralize the charges in the SiNx films. Electron-Spin-Resonance (ESR) technique was used to detect and quantify the density of neutral K0 defects that are paramagnetically active. The density of the neutral K0 defects increased after UV treatment and decreased after high temperature annealing and charging treatments. Etch-back C-V measurements on SiNx films showed that the K centers are spread throughout the bulk of the SiNx film and not just near the SiNx-Si interface. It was also shown that the negative injected charges in the SiNx film were stable and present even after 1 year under indoor room-temperature conditions. Lastly, a stack of SiO2/SiNx dielectric layers applicable to standard commercial solar cells was developed using a low temperature (< 400 °C) PECVD process. Excellent surface passivation on FZ and CZ Si substrates for both n- and p-type samples was achieved by manipulating and controlling the charge in SiNx films.
ContributorsSharma, Vivek (Author) / Bowden, Stuart (Thesis advisor) / Schroder, Dieter (Committee member) / Honsberg, Christiana (Committee member) / Roedel, Ronald (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2013
152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151952-Thumbnail Image.png
Description
Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse.

Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse. In this research, experiments were carried out on practical high-performance dielectrics including ZrTiO4-ZnNb2O6 (ZTZN) and Ba(Co,Zn)1/3Nb2/3O3 (BCZN) with high dielectric constant and low loss tangent. Thin films were deposited by laser ablation on various substrates, with a systematical study of growth conditions like substrate temperature, oxygen pressure and annealing to optimize the film quality, and the compositional, microstructural, optical and electric properties were characterized. The deposited ZTZN films were randomly oriented polycrystalline on Si substrate and textured on MgO substrate with a tetragonal lattice change at elevated temperature. The BCZN films deposited on MgO substrate showed superior film quality relative to that on other substrates, which grow epitaxially with an orientation of (001) // MgO (001) and (100) // MgO (100) when substrate temperature was above 500 oC. In-situ annealing at growth temperature in 200 mTorr oxygen pressure was found to enhance the quality of the films, reducing the peak width of the X-ray Diffraction (XRD) rocking curve to 0.53o and the χmin of channeling Rutherford Backscattering Spectrometry (RBS) to 8.8% when grown at 800oC. Atomic Force Microscopy (AFM) was used to study the topography and found a monotonic decrease in the surface roughness when the growth temperature increased. Optical absorption and transmission measurements were used to determine the energy bandgap and the refractive index respectively. A low-frequency dielectric constant of 34 was measured using a planar interdigital measurement structure. The resistivity of the film is ~3×1010 ohm·cm at room temperature and has an activation energy of thermal activated current of 0.66 eV.
ContributorsLi, You (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Arizona State University (Publisher)
Created2013
151815-Thumbnail Image.png
Description
The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and spread essential technical know-how to different parts of the world. In this thesis, I present AJDSP, an Android application evolved from JDSP, providing an intuitive and a easy to use environment for signal processing education. AJDSP is a graphical programming laboratory for digital signal processing developed for the Android platform. It is designed to provide utility; both as a supplement to traditional classroom learning and as a tool for self-learning. The architecture of AJDSP is based on the Model-View-Controller paradigm optimized for the Android platform. The extensive set of function modules cover a wide range of basic signal processing areas such as convolution, fast Fourier transform, z transform and filter design. The simple and intuitive user interface inspired from iJDSP is designed to facilitate ease of navigation and to provide the user with an intimate learning environment. Rich visualizations necessary to understand mathematically intensive signal processing algorithms have been incorporated into the software. Interactive demonstrations boosting student understanding of concepts like convolution and the relation between different signal domains have also been developed. A set of detailed assessments to evaluate the application has been conducted for graduate and senior-level undergraduate students.
ContributorsRanganath, Suhas (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
151324-Thumbnail Image.png
Description
A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is traditionally known to be intractable or computationally expensive to implement. First, real-time scheduling with adaptive network coding over memoryless channels is studied, and a polynomial-time complexity algorithm is developed to characterize the optimal real-time scheduling. Then, real-time scheduling over Markovian channels is investigated, where channel conditions are time-varying and online channel learning is necessary, and the optimal scheduling policies in different traffic regimes are studied. The second part focuses on the stochastic optimization and real-time scheduling involved in energy systems. First, risk-aware scheduling and dispatch for plug-in electric vehicles (EVs) are studied, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecasted and the actual EV loads, due to the random driving activities of EVs. Then, the integration of wind generation at high penetration levels into bulk power grids is considered. Joint optimization of economic dispatch and interruptible load management is investigated using short-term wind farm generation forecast. The third part studies stochastic optimization in distributed control systems under different network environments. First, distributed spectrum access in cognitive radio networks is investigated by using pricing approach, where primary users (PUs) sell the temporarily unused spectrum and secondary users compete via random access for such spectrum opportunities. The optimal pricing strategy for PUs and the corresponding distributed implementation of spectrum access control are developed to maximize the PU's revenue. Then, a systematic study of the nonconvex utility-based power control problem is presented under the physical interference model in ad-hoc networks. Distributed power control schemes are devised to maximize the system utility, by leveraging the extended duality theory and simulated annealing.
ContributorsYang, Lei (Author) / Zhang, Junshan (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Xue, Guoliang (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2012
151382-Thumbnail Image.png
Description
A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its

A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its application in Fourier optics: it is shown that the WD is analogous to the spectral dispersion that results from a diffraction grating, and time and frequency are similarly analogous to a one dimensional spatial coordinate and wavenumber. The grating is compared with a simple polychromator, which is a bank of optical filters. Another well-known TFR is the short time Fourier transform (STFT). Its discrete version can be shown to be equivalent to a filter bank, an array of bandpass filters that enable localized processing of the analysis signals in different sub-bands. This work proposes a signal-adaptive method of generating TFRs. In order to minimize distortion in analyzing a signal, the method modifies the filter bank to consist of non-overlapping rectangular bandpass filters generated using the Butterworth filter design process. The information contained in the resulting TFR can be used to reconstruct the signal, and perfect reconstruction techniques involving quadrature mirror filter banks are compared with a simple Fourier synthesis sum. The optimal filter parameters of the rectangular filters are selected adaptively by minimizing the mean-squared error (MSE) from a pseudo-reconstructed version of the analysis signal. The reconstruction MSE is proposed as an error metric for characterizing TFRs; a practical measure of the error requires normalization and cross correlation with the analysis signal. Simulations were performed to demonstrate the the effectiveness of the new adaptive TFR and its relation to swept-tuned spectrum analyzers.
ContributorsWeber, Peter C. (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2012