This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
135909-Thumbnail Image.png
Description
Poly(ionic liquid)s (PILs) with an intrinsically conducting pyrrole polymer (ICP) backbone were synthesized and utilized as novel dispersants of carbon nanotubes (CNTs) in various polar and nonpolar solvents. This is due to their highly tunable nature, in which the anions can be easily exchanged to form PILs of varying polarity

Poly(ionic liquid)s (PILs) with an intrinsically conducting pyrrole polymer (ICP) backbone were synthesized and utilized as novel dispersants of carbon nanotubes (CNTs) in various polar and nonpolar solvents. This is due to their highly tunable nature, in which the anions can be easily exchanged to form PILs of varying polarity but with the same polycation. These CNT dispersions were exceedingly stable over many months, and with the addition of hexane, Pickering emulsions with the PIL-stabilized CNTs at the droplet interfaces were formed. Depending on the hydrophobicity of the PIL, hexane-in-water and hexane-in-acetonitrile emulsions were formed, the latter marking the first non-aqueous stabilized-CNT emulsions and corresponding CNT-in-acetonitrile dispersion, further advancing the processability of CNTs. The PIL-stabilized CNT Pickering emulsion droplets generated hollow conductive particles by subsequent drying of the emulsions. With the emulsion templating, the hollow shells can be used as a payload carrier, depending on the solubility of the payload in the droplet phase of the emulsion. This was demonstrated with silicon nanoparticles, which have limited solubility in aqueous environments, but great scientific interest due to their potential electrochemical applications. Overall, this work explored a new class of efficient PIL-ICP hybrid stabilizers with tunable hydrophobicity, offering extended stability of carbon nanotube dispersions with novel applications in hollow particle formation via Pickering emulsion templating and in placing payloads into the shells.
ContributorsHom, Conrad Oliver (Co-author) / Chatterjee, Prithwish (Co-author) / Nofen, Elizabeth (Co-author, Committee member) / Xu, Wenwen (Co-author) / Jiang, Hanqing (Co-author) / Dai, Lenore (Co-author, Thesis director) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12