This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

152390-Thumbnail Image.png
Description
Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have

Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have limitations at high temperature resulting in poor permeation performance. To address these limitations, the use of a dense dual-phase membrane has been studied. These membranes are composed of conductive solid and conductive liquid phases that have the ability to selectively permeate CO2 by forming carbonate ions that diffuse through the membrane at high temperature. The driving force for transport through the membrane is a CO2 partial pressure gradient. The membrane provides a theoretically infinite selectivity. To address stability of the ceramic-carbonate dual-phase membrane for CO2 capture at high temperature, the ceramic phase of the membrane was studied and replaced with materials previously shown to be stable in harsh conditions. The permeation properties and stability of La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF)-carbonate, La0.85Ce0.1Ga0.3Fe0.65Al0.05O3-δ (LCGFA)-carbonate, and Ce0.8Sm0.2O1.9 (SDC)-carbonate membranes were examined under a wide range of experimental conditions at high temperature. LSCF-carbonate membranes were shown to be unstable without the presence of O2 due to reaction of CO2 with the ceramic phase. In the presence of O2, however, the membranes showed stable permeation behavior for more than one month at 900oC. LCGFA-carbonate membranes showed great chemical and permeation stability in the presence of various conditions including exposure to CH4 and H2, however, the permeation performance was quite low when compared to membranes in the literature. Finally, SDC-carbonate membranes showed great chemical and permeation stability both in a CO2:N2 environment for more than two weeks at 900oC as well as more than one month of exposure to simulated syngas conditions at 700oC. Ceramic phase chemical stability increased in the order of LSCF < LCGFA < SDC while permeation performance increased in the order of LCGFA < LSCF < SDC.
ContributorsNorton, Tyler (Author) / Lin, Jerry Y.S. (Thesis advisor) / Alford, Terry (Committee member) / Lind, Mary Laura (Committee member) / Smith, David (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2013
156142-Thumbnail Image.png
Description
Graphene oxide membranes have shown promising gas separation characteristics specially for hydrogen that make them of interest for industrial applications. However, the gas transport mechanism for these membranes is unclear due to inconsistent permeation and separation results reported in literature. Graphene oxide membranes made by filtration, the most common synthesis

Graphene oxide membranes have shown promising gas separation characteristics specially for hydrogen that make them of interest for industrial applications. However, the gas transport mechanism for these membranes is unclear due to inconsistent permeation and separation results reported in literature. Graphene oxide membranes made by filtration, the most common synthesis method, contain wrinkles affecting their gas separation characteristics and the method itself is difficult to scale up. Moreover, the production of graphene oxide membranes with fine-tuned interlayer spacing for improved molecular separation is still a challenge. These unsolved issues will affect their potential impact on industrial gas separation applications.

In this study, high quality graphene oxide membranes are synthesized on polyester track etch substrates by different deposition methods and characterized by XRD, SEM, AFM as well as single gas permeation and binary (H2/CO2) separation experiments. Membranes are made from large graphene oxide sheets of different sizes (33 and 17 micron) using vacuum filtration to shed more light on their transport mechanism. Membranes are made from dilute graphene oxide suspension by easily scalable spray coating technique to minimize extrinsic wrinkle formation. Finally, Brodie’s derived graphene oxide sheets were used to prepare membranes with narrow interlayer spacing to improve their (H2/CO2) separation performance.

An inter-sheet and inner-sheet two-pathway model is proposed to explain the permeation and separation results of graphene oxide membranes obtained in this study. At room temperature, large gas molecules (CH4, N2, and CO2) permeate through inter-sheet pathway of the membranes, exhibiting Knudsen like diffusion characteristics, with the permeance for the small sheet membrane about twice that for the large sheet membrane. The small gases (H2 and He) exhibit much higher permeance, showing significant flow through an inner-sheet pathway, in addition to the flow through the inter-sheet pathway. Membranes prepared by spray coating offer gas characteristics similar to those made by filtration, however using dilute graphene oxide suspension in spray coating will help reduce the formation of extrinsic wrinkles which result in reduction in the porosity of the inter-sheet pathway where the transport of large gas molecules dominates. Brodie’s derived graphene oxide membranes showed overall low permeability and significant improvement in in H2/CO2 selectivity compared to membranes made using Hummers’ derived sheets due to smaller interlayer space height of Brodie’s sheets (~3 Å).
ContributorsIbrahim, Amr Fatehy Muhammad (Author) / Lin, Jerry Y.S. (Thesis advisor) / Mu, Bin (Committee member) / Lind, Mary (Committee member) / Green, Matthew (Committee member) / Wang, Qing (Committee member) / Arizona State University (Publisher)
Created2018