This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

Description
Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to

Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine.

This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each task have their specific characteristics and demonstrate unique problems. Automatic diagnosis of melancholic depression is made on the basis of metabolic profiles and micro-array gene expression profiles where the presence of missing values and strong empirical correlation between the variables is not unusual. To deal with these problems, a method of generating a representative set of features is proposed. Prognosis is made on data collected from rating scales and questionnaires which consist mainly of categorical and ordinal variables and thus favor decision tree based predictive models. Decision tree models are known for the notorious problem of overfitting. A decision tree pruning method that overcomes the shortcomings of a greedy nature and reliance on heuristics inherent in traditional decision tree pruning approaches is proposed. The method is further extended to prune Gradient Boosting Decision Tree and tested on the task of prognosis of treatment outcome. Follow-up studies evaluating the long-term effect of the treatments on patients usually measure patients' depressive symptom severity monthly, resulting in the actual time of relapse upper bounded by the observed time of relapse. To resolve such uncertainty in response, a general loss function where the hypothesis could take different forms is proposed to predict the risk of relapse in situations where only an interval for time of relapse can be derived from the observed data.
ContributorsNie, Zhi (Author) / Ye, Jieping (Thesis advisor) / He, Jingrui (Thesis advisor) / Li, Baoxin (Committee member) / Xue, Guoliang (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2017
155228-Thumbnail Image.png
Description
Imaging genetics is an emerging and promising technique that investigates how genetic variations affect brain development, structure, and function. By exploiting disorder-related neuroimaging phenotypes, this class of studies provides a novel direction to reveal and understand the complex genetic mechanisms. Oftentimes, imaging genetics studies are challenging due to the relatively

Imaging genetics is an emerging and promising technique that investigates how genetic variations affect brain development, structure, and function. By exploiting disorder-related neuroimaging phenotypes, this class of studies provides a novel direction to reveal and understand the complex genetic mechanisms. Oftentimes, imaging genetics studies are challenging due to the relatively small number of subjects but extremely high-dimensionality of both imaging data and genomic data. In this dissertation, I carry on my research on imaging genetics with particular focuses on two tasks---building predictive models between neuroimaging data and genomic data, and identifying disorder-related genetic risk factors through image-based biomarkers. To this end, I consider a suite of structured sparse methods---that can produce interpretable models and are robust to overfitting---for imaging genetics. With carefully-designed sparse-inducing regularizers, different biological priors are incorporated into learning models. More specifically, in the Allen brain image--gene expression study, I adopt an advanced sparse coding approach for image feature extraction and employ a multi-task learning approach for multi-class annotation. Moreover, I propose a label structured-based two-stage learning framework, which utilizes the hierarchical structure among labels, for multi-label annotation. In the Alzheimer's disease neuroimaging initiative (ADNI) imaging genetics study, I employ Lasso together with EDPP (enhanced dual polytope projections) screening rules to fast identify Alzheimer's disease risk SNPs. I also adopt the tree-structured group Lasso with MLFre (multi-layer feature reduction) screening rules to incorporate linkage disequilibrium information into modeling. Moreover, I propose a novel absolute fused Lasso model for ADNI imaging genetics. This method utilizes SNP spatial structure and is robust to the choice of reference alleles of genotype coding. In addition, I propose a two-level structured sparse model that incorporates gene-level networks through a graph penalty into SNP-level model construction. Lastly, I explore a convolutional neural network approach for accurate predicting Alzheimer's disease related imaging phenotypes. Experimental results on real-world imaging genetics applications demonstrate the efficiency and effectiveness of the proposed structured sparse methods.
ContributorsYang, Tao (Author) / Ye, Jieping (Thesis advisor) / Xue, Guoliang (Thesis advisor) / He, Jingrui (Committee member) / Li, Baoxin (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2017
157531-Thumbnail Image.png
Description
Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem

Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements.

Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of defect detection and classification in semiconductor units is challenging due to different acceptable variations that the manufacturing process introduces. Other variations are also typically introduced when using optical inspection systems due to changes in lighting conditions and misalignment of the imaged units, which makes the defect detection process more challenging.

In this thesis, a BagStack classification framework is proposed, which makes use of stacking and bagging concepts to handle both variance and bias errors. The classifier is designed to handle the data imbalance and overfitting problems by adaptively transforming the

multi-class classification problem into multiple binary classification problems, applying a bagging approach to train a set of base learners for each specific problem, adaptively specifying the number of base learners assigned to each problem, adaptively specifying the number of samples to use from each class, applying a novel data-imbalance aware cross-validation technique to generate the meta-data while taking into account the data imbalance problem at the meta-data level and, finally, using a multi-response random forest regression classifier as a meta-classifier. The BagStack classifier makes use of multiple features to solve the defect classification problem. In order to detect defects, a locally adaptive statistical background modeling is proposed. The proposed BagStack classifier outperforms state-of-the-art image classification techniques on our dataset in terms of overall classification accuracy and average per-class classification accuracy. The proposed detection method achieves high performance on the considered dataset in terms of recall and precision.
ContributorsHaddad, Bashar Muneer (Author) / Karam, Lina (Thesis advisor) / Li, Baoxin (Committee member) / He, Jingrui (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2019
162017-Thumbnail Image.png
Description
Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in the number of data volumes and data modality has resulted

Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in the number of data volumes and data modality has resulted in the increased demand for data mining methods and strategies of finding anomalies, patterns, and correlations within large data sets to predict outcomes. Effective machine learning methods are widely adapted to build the data mining pipeline for various purposes like business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The major challenges for effectively and efficiently mining big data include (1) data heterogeneity and (2) missing data. Heterogeneity is the natural characteristic of big data, as the data is typically collected from different sources with diverse formats. The missing value is the most common issue faced by the heterogeneous data analysis, which resulted from variety of factors including the data collecting processing, user initiatives, erroneous data entries, and so on. In response to these challenges, in this thesis, three main research directions with application scenarios have been investigated: (1) Mining and Formulating Heterogeneous Data, (2) missing value imputation strategy in various application scenarios in both offline and online manner, and (3) missing value imputation for multi-modality data. Multiple strategies with theoretical analysis are presented, and the evaluation of the effectiveness of the proposed algorithms compared with state-of-the-art methods is discussed.
Contributorsliu, Xu (Author) / He, Jingrui (Thesis advisor) / Xue, Guoliang (Thesis advisor) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2021