This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

150141-Thumbnail Image.png
Description
A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and

A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and their respective temperatures established simultaneously. Polystyrene and silica nanoparticles are synthesized with a variety of temperature-sensitive dyes such as BODIPY, rose Bengal, Rhodamine dyes 6G, 700, and 800, and Nile Blue A and Nile Red. Photographs are taken with a QImaging QM1 Questar EXi Retiga camera while particles are heated from 25 to 70 C and excited at 532 nm with a Coherent DPSS-532 laser. Photographs are converted to intensity images in MATLAB and analyzed for fluorescence intensity, and plots are generated in MATLAB to describe each dye's intensity vs temperature. Regression curves are created to describe change in fluorescence intensity over temperature. Dyes are compared as nanoparticle core material is varied. Large particles are also created to match the camera's optical resolution capabilities, and it is established that intensity values increase proportionally with nanoparticle size. Nile Red yielded the closest-fit model, with R2 values greater than 0.99 for a second-order polynomial fit. By contrast, Rhodamine 6G only yielded an R2 value of 0.88 for a third-order polynomial fit, making it the least reliable dye for temperature measurements using the polynomial model. Of particular interest in this work is Nile Blue A, whose fluorescence-temperature curve yielded a much different shape from the other dyes. It is recommended that future work describe a broader range of dyes and nanoparticle sizes, and use multiple excitation wavelengths to better quantify each dye's quantum efficiency. Further research into the effects of nanoparticle size on fluorescence intensity levels should be considered as the particles used here greatly exceed 2 ìm. In addition, Nile Blue A should be further investigated as to why its fluorescence-temperature curve did not take on a characteristic shape for a temperature-sensitive dye in these experiments.
ContributorsTomforde, Christine (Author) / Phelan, Patrick (Thesis advisor) / Dai, Lenore (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
149480-Thumbnail Image.png
Description
Portable devices rely on battery systems that contribute largely to the overall device form factor and delay portability due to recharging. Membraneless microfluidic fuel cells are considered as the next generation of portable power sources for their compatibility with higher energy density reactants. Microfluidic fuel cells are potentially cost effective

Portable devices rely on battery systems that contribute largely to the overall device form factor and delay portability due to recharging. Membraneless microfluidic fuel cells are considered as the next generation of portable power sources for their compatibility with higher energy density reactants. Microfluidic fuel cells are potentially cost effective and robust because they use low Reynolds number flow to maintain fuel and oxidant separation instead of ion exchange membranes. However, membraneless fuel cells suffer from poor efficiency due to poor mass transport and Ohmic losses. Current microfluidic fuel cell designs suffer from reactant cross-diffusion and thick boundary layers at the electrode surfaces, which result in a compromise between the cell's power output and fuel utilization. This dissertation presents novel flow field architectures aimed at alleviating the mass transport limitations. The first architecture provides a reactant interface where the reactant diffusive concentration gradients are aligned with the bulk flow, mitigating reactant mixing through diffusion and thus crossover. This cell also uses porous electro-catalysts to improve electrode mass transport which results in higher extraction of reactant energy. The second architecture uses porous electrodes and an inert conductive electrolyte stream between the reactants to enhance the interfacial electrical conductivity and maintain complete reactant separation. This design is stacked hydrodynamically and electrically, analogous to membrane based systems, providing increased reactant utilization and power. These fuel cell architectures decouple the fuel cell's power output from its fuel utilization. The fuel cells are tested over a wide range of conditions including variation of the loads, reactant concentrations, background electrolytes, flow rates, and fuel cell geometries. These experiments show that increasing the fuel cell power output is accomplished by increasing reactant flow rates, electrolyte conductivity, and ionic exchange areas, and by decreasing the spacing between the electrodes. The experimental and theoretical observations presented in this dissertation will aid in the future design and commercialization of a new portable power source, which has the desired attributes of high power output per weight and volume and instant rechargeability.
ContributorsSalloum, Kamil S (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald (Committee member) / Christen, Jennifer (Committee member) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2010
157987-Thumbnail Image.png
Description
The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed

The applications utilizing nanoparticles have grown in both industrial and academic areas because of the very large surface area to volume ratios of these particles. One of the best ways to process and control these nanoparticles is fluidization. In this work, a new microjet and vibration assisted (MVA) fluidized bed system was developed in order to fluidize nanoparticles. The system was tested and the parameters optimized using two commercially available TiO2 nanoparticles: P25 and P90. The fluidization quality was assessed by determining the non-dimensional bed height as well as the non-dimensional pressure drop. The non-dimensional bed height for the nanosized TiO2 in the MVA system optimized at about 5 and 7 for P25 and P90 TiO2, respectively, at a resonance frequency of 50 Hz. The non-dimensional pressure drop was also determined and showed that the MVA system exhibited a lower minimum fluidization velocity for both of the TiO2 types as compared to fluidization that employed only vibration assistance. Additional experiments were performed with the MVA to characterize the synergistic effects of vibrational intensity and gas velocity on the TiO2 P25 and P90 fluidized bed heights. Mathematical relationships were developed to correlate vibrational intensity, gas velocity, and fluidized bed height in the MVA. The non-dimensional bed height in the MVA system is comparable to previously published P25 TiO2 fluidization work that employed an alcohol in order to minimize the electrostatic attractions within the bed. However, the MVA system achieved similar results without the addition of a chemical, thereby expanding the potential chemical reaction engineering and environmental remediation opportunities for fluidized nanoparticle systems.

In order to aid future scaling up of the MVA process, the agglomerate size distribution in the MVA system was predicted by utilizing a force balance model coupled with a two-fluid model (TFM) simulation. The particle agglomerate size that was predicted using the computer simulation was validated with experimental data and found to be in good agreement.

Lastly, in order to demonstrate the utility of the MVA system in an air revitalization application, the capture of CO2 was examined. CO2 breakthrough time and adsorption capacities were tested in the MVA system and compared to a vibrating fluidized bed (VFB) system. Experimental results showed that the improved fluidity in the MVA system enhanced CO2 adsorption capacity.
ContributorsAn, Keju (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Adrian, Ronald (Committee member) / Emady, Heather (Committee member) / Kasbaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2019