This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187831-Thumbnail Image.png
Description
This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize

This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize a decent basketball shot pattern? - by introducing a supervised learning paradigm, where the ML method takes acceleration attributes to predict the basketball shot efficiency. The solution presented in this study considers motion capture devices configuration on the right upper limb with a sole motion sensor made by BNO080 and ESP32 attached on the right wrist, right forearm, and right shoulder, respectively, By observing the rate of speed changing in the shooting movement and comparing their performance, ML models that apply K-Nearest Neighbor, and Decision Tree algorithm, conclude the best range of acceleration that different spots on the arm should implement.
ContributorsLiang, Chengxu (Author) / Ingalls, Todd (Thesis advisor) / Turaga, Pavan (Thesis advisor) / De Luca, Gennaro (Committee member) / Arizona State University (Publisher)
Created2023
157697-Thumbnail Image.png
Description
The depth richness of a scene translates into a spatially variable defocus blur in the acquired image. Blurring can mislead computational image understanding; therefore, blur detection can be used for selective image enhancement of blurred regions and the application of image understanding algorithms to sharp regions. This work focuses on

The depth richness of a scene translates into a spatially variable defocus blur in the acquired image. Blurring can mislead computational image understanding; therefore, blur detection can be used for selective image enhancement of blurred regions and the application of image understanding algorithms to sharp regions. This work focuses on blur detection and its application to image enhancement.

This work proposes a spatially-varying defocus blur detection based on the quotient of spectral bands; additionally, to avoid the use of computationally intensive algorithms for the segmentation of foreground and background regions, a global threshold defined using weak textured regions on the input image is proposed. Quantitative results expressed in the precision-recall space as well as qualitative results overperform current state-of-the-art algorithms while keeping the computational requirements at competitive levels.

Imperfections in the curvature of lenses can lead to image radial distortion (IRD). Computer vision applications can be drastically affected by IRD. This work proposes a novel robust radial distortion correction algorithm based on alternate optimization using two cost functions tailored for the estimation of the center of distortion and radial distortion coefficients. Qualitative and quantitative results show the competitiveness of the proposed algorithm.

Blur is one of the causes of visual discomfort in stereopsis. Sharpening applying traditional algorithms can produce an interdifference which causes eyestrain and visual fatigue for the viewer. A sharpness enhancement method for stereo images that incorporates binocular vision cues and depth information is presented. Perceptual evaluation and quantitative results based on the metric of interdifference deviation are reported; results of the proposed algorithm are competitive with state-of-the-art stereo algorithms.

Digital images and videos are produced every day in astonishing amounts. Consequently, the market-driven demand for higher quality content is constantly increasing which leads to the need of image quality assessment (IQA) methods. A training-free, no-reference image sharpness assessment method based on the singular value decomposition of perceptually-weighted normalized-gradients of relevant pixels in the input image is proposed. Results over six subject-rated publicly available databases show competitive performance when compared with state-of-the-art algorithms.
ContributorsAndrade Rodas, Juan Manuel (Author) / Spanias, Andreas (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Abousleman, Glen (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2019