This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

152154-Thumbnail Image.png
Description
As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell

As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell surfaces. The focus of this work is to understand the properties of charges present in the SiNx films and then to develop a mechanism to manipulate the polarity of charges to either negative or positive based on the end-application. Specific silicon-nitrogen dangling bonds (·Si-N), known as K center defects, are the primary charge trapping defects present in the SiNx films. A custom built corona charging tool was used to externally inject positive or negative charges in the SiNx film. Detailed Capacitance-Voltage (C-V) measurements taken on corona charged SiNx samples confirmed the presence of a net positive or negative charge density, as high as +/- 8 x 1012 cm-2, present in the SiNx film. High-energy (~ 4.9 eV) UV radiation was used to control and neutralize the charges in the SiNx films. Electron-Spin-Resonance (ESR) technique was used to detect and quantify the density of neutral K0 defects that are paramagnetically active. The density of the neutral K0 defects increased after UV treatment and decreased after high temperature annealing and charging treatments. Etch-back C-V measurements on SiNx films showed that the K centers are spread throughout the bulk of the SiNx film and not just near the SiNx-Si interface. It was also shown that the negative injected charges in the SiNx film were stable and present even after 1 year under indoor room-temperature conditions. Lastly, a stack of SiO2/SiNx dielectric layers applicable to standard commercial solar cells was developed using a low temperature (< 400 °C) PECVD process. Excellent surface passivation on FZ and CZ Si substrates for both n- and p-type samples was achieved by manipulating and controlling the charge in SiNx films.
ContributorsSharma, Vivek (Author) / Bowden, Stuart (Thesis advisor) / Schroder, Dieter (Committee member) / Honsberg, Christiana (Committee member) / Roedel, Ronald (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2013
155734-Thumbnail Image.png
Description
The automotive industry is committed to moving towards sustainable modes of transportation through electrified vehicles to improve the fuel economy with a reduced carbon footprint. In this context, battery-operated hybrid, plug-in hybrid and all-electric vehicles (EVs) are becoming commercially viable throughout the world. Lithium-ion (Li-ion) batteries with various active materials,

The automotive industry is committed to moving towards sustainable modes of transportation through electrified vehicles to improve the fuel economy with a reduced carbon footprint. In this context, battery-operated hybrid, plug-in hybrid and all-electric vehicles (EVs) are becoming commercially viable throughout the world. Lithium-ion (Li-ion) batteries with various active materials, electrolytes, and separators are currently being used for electric vehicle applications. Specifically, lithium-ion batteries with Lithium Iron Phosphate (LiFePO4 - LFP) and Lithium Nickel Manganese Cobalt Oxide (Li(NiMnCo)O2 - NMC) cathodes are being studied mainly due to higher cycle life and higher energy density values, respectively. In the present work, 26650 Li-ion batteries with LFP and NMC cathodes were evaluated for Plug-in Hybrid Electric Vehicle (PHEV) applications, using the Federal Urban Driving Schedule (FUDS) to discharge the batteries with 20 A current in simulated Arizona, USA weather conditions (50 ⁰C & <10% RH). In addition, 18650 lithium-ion batteries (LFP cathode material) were evaluated under PHEV mode with 30 A current to accelerate the ageing process, and to monitor the capacity values and material degradation. To offset the high initial cost of the batteries used in electric vehicles, second-use of these retired batteries is gaining importance, and the possibility of second-life use of these tested batteries was also examined under constant current charge/discharge cycling at 50 ⁰C.

The capacity degradation rate under the PHEV test protocol for batteries with NMC-based cathode (16% over 800 cycles) was twice the degradation compared to batteries with LFP-based cathode (8% over 800 cycles), reiterating the fact that batteries with LFP cathodes have a higher cycle life compared to other lithium battery chemistries. Also, the high frequency resistance measured by electrochemical impedance spectroscopy (EIS) was found to increase significantly with cycling, leading to power fading for both the NMC- as well as LFP-based batteries. The active materials analyzed using X-ray diffraction (XRD) showed no significant phase change in the materials after 800 PHEV cycles. For second-life tests, these batteries were subjected to a constant charge-discharge cycling procedure to analyze the capacity degradation and materials characteristics.
ContributorsVaidya, Rutvik Milind (Author) / Kannan, Arunachala Mada (Thesis advisor) / Alford, Terry (Committee member) / Wishart, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2017
158222-Thumbnail Image.png
Description
The realization of Silicon based photonic devices will enable much faster data transmission than is possible today using the current electronics based devices. Group IV alloys germanium tin (GeSn) and silicon germanium tin (SiGeSn) have the potential to form an direct bandgap material and thus, they are promising candidates to

The realization of Silicon based photonic devices will enable much faster data transmission than is possible today using the current electronics based devices. Group IV alloys germanium tin (GeSn) and silicon germanium tin (SiGeSn) have the potential to form an direct bandgap material and thus, they are promising candidates to develop a Si compatible light source and advance the field of silicon photonics. However, the growth of the alloys is challenging as it requires low temperature growth and proper strain management in the films during growth to prevent tin segregation. In order to satisfy these criteria, various research groups have developed novel chemical vapor deposition (CVD) reactors to deposit the films. While these reactors have been highly successful in depositing high crystal quality high Sn concentration films, they are generally expensive set-ups which utilize several turbomolecular/cryogenic pumps and/or load-lock systems. An more economical process than the state-of-the art to grow group IV materials will be highly valuable. Thus, the work presented in this dissertation was focused on deposition of group IV semiconductor thin films using simplified plasma enhanced CVD (PECVD) reactors.

Two different in-house assembled PECVD reactor systems, namely Reactor No. 1 and 2, were utilized to deposit Ge, GeSn and SiGeSn thin films. PECVD technique was used as plasma assistance allows for potentially depositing the films at growth temperatures lower than those of conventional CVD. Germane (GeH4) and Digermane (Ge2H6) were used as the Ge precursor while Disilane (Si2H6) and tin chloride (SnCl4) were used as the precursors for Si and Sn respectively. The growth conditions such as growth temperature, precursor flow rates, precursor partial pressures, and chamber pressure were varied in a wide range to optimize the growth conditions for the films. Polycrystalline Ge films and SiGeSn films with an Sn content upto 8% were deposited using Reactor No. 1 and 2. Development of epitaxial Ge buffers and GeSn films was accomplished using a modified Reactor No. 2 at temperatures <400oC without the aid of ultra-high vacuum conditions or a high temperature substrate pre-deposition bake thereby leading to a low economic and thermal budget for the deposition process.
ContributorsVanjaria, Jignesh (Author) / Yu, Hongbin (Thesis advisor) / Arjunan, Arul C (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2020