This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151010-Thumbnail Image.png
Description
Power supply management is important for MEMS (Micro-Electro-Mechanical-Systems) bio-sensing and chemical sensing applications. The dissertation focuses on discussion of accessibility to different power sources and supply tuning in sensing applications. First, the dissertation presents a high efficiency DC-DC converter for a miniaturized Microbial Fuel Cell (MFC). The miniaturized MFC produces

Power supply management is important for MEMS (Micro-Electro-Mechanical-Systems) bio-sensing and chemical sensing applications. The dissertation focuses on discussion of accessibility to different power sources and supply tuning in sensing applications. First, the dissertation presents a high efficiency DC-DC converter for a miniaturized Microbial Fuel Cell (MFC). The miniaturized MFC produces up to approximately 10µW with an output voltage of 0.4-0.7V. Such a low voltage, which is also load dependent, prevents the MFC to directly drive low power electronics. A PFM (Pulse Frequency Modulation) type DC-DC converter in DCM (Discontinuous Conduction Mode) is developed to address the challenges and provides a load independent output voltage with high conversion efficiency. The DC-DC converter, implemented in UMC 0.18µm technology, has been thoroughly characterized, coupled with the MFC. At 0.9V output, the converter has a peak efficiency of 85% with 9µW load, highest efficiency over prior publication. Energy could be harvested wirelessly and often has profound impacts on system performance. The dissertation reports a side-by-side comparison of two wireless and passive sensing systems: inductive and electromagnetic (EM) couplings for an application of in-situ and real-time monitoring of wafer cleanliness in semiconductor facilities. The wireless system, containing the MEMS sensor works with battery-free operations. Two wireless systems based on inductive and EM couplings have been implemented. The working distance of the inductive coupling system is limited by signal-to-noise-ratio (SNR) while that of the EM coupling is limited by the coupled power. The implemented on-wafer transponders achieve a working distance of 6 cm and 25 cm with a concentration resolution of less than 2% (4 ppb for a 200 ppb solution) for inductive and EM couplings, respectively. Finally, the supply tuning is presented in bio-sensing application to mitigate temperature sensitivity. The FBAR (film bulk acoustic resonator) based oscillator is an attractive method in label-free sensing application. Molecular interactions on FBAR surface induce mass change, which results in resonant frequency shift of FBAR. While FBAR has a high-Q to be sensitive to the molecular interactions, FBAR has finite temperature sensitivity. A temperature compensation technique is presented that improves the temperature coefficient of a 1.625 GHz FBAR-based oscillator from -118 ppm/K to less than 1 ppm/K by tuning the supply voltage of the oscillator. The tuning technique adds no additional component and has a large frequency tunability of -4305 ppm/V.
ContributorsZhang, Xu (Author) / Chae, Junseok (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Kozicki, Michael (Committee member) / Phillips, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
154108-Thumbnail Image.png
Description
A single solar cell provides close to 0.5 V output at its maximum power point, which is very

low for any electronic circuit to operate. To get rid of this problem, traditionally multiple

solar cells are connected in series to get higher voltage. The disadvantage of this approach

is the efficiency loss for

A single solar cell provides close to 0.5 V output at its maximum power point, which is very

low for any electronic circuit to operate. To get rid of this problem, traditionally multiple

solar cells are connected in series to get higher voltage. The disadvantage of this approach

is the efficiency loss for partial shading or mismatch. Even as low as 6-7% of shading can

result in more than 90% power loss. Therefore, Maximum Power Point Tracking (MPPT)

at single solar cell level is the most efficient way to extract power from solar cell.

Power Management IC (MPIC) used to extract power from single solar cell, needs to

start at 0.3 V input. MPPT circuitry should be implemented with minimal power and area

overhead. To start the PMIC at 0.3 V, a switch capacitor charge pump is utilized as an

auxiliary start up circuit for generating a regulated 1.8 V auxiliary supply from 0.3 V input.

The auxiliary supply powers up a MPPT converter followed by a regulated converter. At

the start up both the converters operate at 100 kHz clock with 80% duty cycle and system

output voltage starts rising. When the system output crosses 2.7 V, the auxiliary start up

circuit is turned off and the supply voltage for both the converters is derived from the system

output itself. In steady-state condition the system output is regulated to 3.0 V.

A fully integrated analog MPPT technique is proposed to extract maximum power from

the solar cell. This technique does not require Analog to Digital Converter (ADC) and

Digital Signal Processor (DSP), thus reduces area and power overhead. The proposed

MPPT techniques includes a switch capacitor based power sensor which senses current of

boost converter without using any sense resistor. A complete system is designed which

starts from 0.3 V solar cell voltage and provides regulated 3.0 V system output.
ContributorsSingh, Shrikant (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015