This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150773-Thumbnail Image.png
Description
Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides

Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides real-time measurements of each PV module's voltage and current is considered. A fault detection algorithm formulated as a clustering problem and addressed using the robust minimum covariance determinant (MCD) estimator is described; its performance on simulated instances of arc and ground faults is evaluated. The algorithm is found to perform well on many types of faults commonly occurring in PV arrays. Among several types of detection algorithms considered, only the MCD shows high performance on both types of faults.
ContributorsBraun, Henry (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2012
158646-Thumbnail Image.png
Description
Imagery data has become important for civil infrastructure operation and

maintenance because imagery data can capture detailed visual information with high

frequencies. Computer vision can be useful for acquiring spatiotemporal details to

support the timely maintenance of critical civil infrastructures that serve society. Some

examples include: irrigation canals need to maintain the leaking sections

Imagery data has become important for civil infrastructure operation and

maintenance because imagery data can capture detailed visual information with high

frequencies. Computer vision can be useful for acquiring spatiotemporal details to

support the timely maintenance of critical civil infrastructures that serve society. Some

examples include: irrigation canals need to maintain the leaking sections to avoid water

loss; project engineers need to identify the deviating parts of the workflow to have the

project finished on time and within budget; detecting abnormal behaviors of air traffic

controllers is necessary to reduce operational errors and avoid air traffic accidents.

Identifying the outliers of the civil infrastructure can help engineers focus on targeted

areas. However, large amounts of imagery data bring the difficulty of information

overloading. Anomaly detection combined with contextual knowledge could help address

such information overloading to support the operation and maintenance of civil

infrastructures.

Some challenges make such identification of anomalies difficult. The first challenge is

that diverse large civil infrastructures span among various geospatial environments so

that previous algorithms cannot handle anomaly detection of civil infrastructures in

different environments. The second challenge is that the crowded and rapidly changing

workspaces can cause difficulties for the reliable detection of deviating parts of the

workflow. The third challenge is that limited studies examined how to detect abnormal

behaviors for diverse people in a real-time and non-intrusive manner. Using video andii

relevant data sources (e.g., biometric and communication data) could be promising but

still need a baseline of normal behaviors for outlier detection.

This dissertation presents an anomaly detection framework that uses contextual

knowledge, contextual information, and contextual data for filtering visual information

extracted by computer vision techniques (ADCV) to address the challenges described

above. The framework categorizes the anomaly detection of civil infrastructures into two

categories: with and without a baseline of normal events. The author uses three case

studies to illustrate how the developed approaches can address ADCV challenges in

different categories of anomaly detection. Detailed data collection and experiments

validate the developed ADCV approaches.
ContributorsChen, Jiawei (Author) / Tang, Pingbo (Thesis advisor) / Ayer, Steven (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020