This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154148-Thumbnail Image.png
Description
Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this

Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this control. In short, learning became a key component in controlling these systems. As a result, BMIs have become ideal tools to probe and explore brain activity, since they allow the isolation of neural inputs and systematic altering of the relationships between the neural signals and output. I have used BMIs to explore the process of brain adaptability in a motor-like task. To this end, I trained non-human primates to control a 3D cursor and adapt to two different perturbations: a visuomotor rotation, uniform across the neural ensemble, and a decorrelation task, which non-uniformly altered the relationship between the activity of particular neurons in an ensemble and movement output. I measured individual and population level changes in the neural ensemble as subjects honed their skills over the span of several days. I found some similarities in the adaptation process elicited by these two tasks. On one hand, individual neurons displayed tuning changes across the entire ensemble after task adaptation: most neurons displayed transient changes in their preferred directions, and most neuron pairs showed changes in their cross-correlations during the learning process. On the other hand, I also measured population level adaptation in the neural ensemble: the underlying neural manifolds that control these neural signals also had dynamic changes during adaptation. I have found that the neural circuits seem to apply an exploratory strategy when adapting to new tasks. Our results suggest that information and trajectories in the neural space increase after initially introducing the perturbations, and before the subject settles into workable solutions. These results provide new insights into both the underlying population level processes in motor learning, and the changes in neural coding which are necessary for subjects to learn to control neuroprosthetics. Understanding of these mechanisms can help us create better control algorithms, and design training paradigms that will take advantage of these processes.
ContributorsArmenta Salas, Michelle (Author) / Helms Tillery, Stephen I (Thesis advisor) / Si, Jennie (Committee member) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2015
155473-Thumbnail Image.png
Description
In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central

In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm to map neural recordings to upper limb kinematics and (iii) a prosthetic arm actuated by control signals generated by the algorithm. Machine learning algorithms that map input neural activity to the output kinematics (like finger trajectory) form the core of the neural decoding system. The choice of the algorithm is thus, mainly imposed by the neural signal of interest and the output parameter being decoded. The various parts of a neural decoding system are neural data, feature extraction, feature selection, and machine learning algorithm. There have been significant advances in the field of neural prosthetic applications. But there are challenges for translating a neural prosthesis from a laboratory setting to a clinical environment. To achieve a fully functional prosthetic device with maximum user compliance and acceptance, these factors need to be addressed and taken into consideration. Three challenges in developing robust neural decoding systems were addressed by exploring neural variability in the peripheral nervous system for dexterous finger movements, feature selection methods based on clinically relevant metrics and a novel method for decoding dexterous finger movements based on ensemble methods.
ContributorsPadmanaban, Subash (Author) / Greger, Bradley (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Crook, Sharon (Committee member) / Arizona State University (Publisher)
Created2017