This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

154184-Thumbnail Image.png
Description
The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each

The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each of these applications, the thermal transport property plays a big role. An undesirable temperature rise due to inefficient heat dissipation could lead to deleterious effects on devices' performance and lifetime. Hence, the first project is focused on investigating the thermal transport in colloidal nanocrystal solids. This study answers the question that how the molecular structure of nanocrystals affect the thermal transport, and provides insights for future device designs. In particular, PbS nanocrystals is used as a monitoring system, and the core diameter, ligand length and ligand binding group are systematically varied to study the corresponding effect on thermal transport.

Next, a fundamental study is presented on the phase stability and solid-liquid transformation of metallic (In, Sn and Bi) colloidal nanocrystals. Although the phase change of nanoparticles has been a long-standing research topic, the melting behavior of colloidal nanocrytstals is largely unexplored. In addition, this study is of practical importance to nanocrystal-based applications that operate at elevated temperatures. Embedding colloidal nanocrystals into thermally-stable polymer matrices allows preserving nanocrystal size throughout melt-freeze cycles, and therefore enabling observation of stable melting features. Size-dependent melting temperature, melting enthalpy and melting entropy have all been measured and discussed.

In the next two chapters, focus has been switched to developing colloidal nanocrystal-based phase change composites for thermal energy storage applications. In Chapter 4, a polymer matrix phase change nanocomposite has been created. In this composite, the melting temperature and energy density could be independently controlled by tuning nanocrystal diameter and volume fractions. In Chapter 5, a solution-phase synthesis on metal matrix-metal nanocrytal composite is presented. This approach enables excellent morphological control over nanocrystals and demonstrated a phase change composite with a thermal conductivity 2 - 3 orders of magnitude greater than typical phase change materials, such as organics and molten salts.
ContributorsLiu, Minglu (Author) / Wang, Robert Y (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Phelan, Patrick (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2015
157049-Thumbnail Image.png
Description
Soft polymer composites with improved thermal conductivity are needed for the thermal management of electronics. Interfacial thermal boundary resistance, however, prevents the efficient use of many high thermal conductivity fill materials. Magnetic alignment of ferrous fill material enforces percolation of the high thermal conductivity fill, thereby shifting the governing boundary

Soft polymer composites with improved thermal conductivity are needed for the thermal management of electronics. Interfacial thermal boundary resistance, however, prevents the efficient use of many high thermal conductivity fill materials. Magnetic alignment of ferrous fill material enforces percolation of the high thermal conductivity fill, thereby shifting the governing boundary resistance to the particle- particle interfaces and increasing the directional thermal conductivity of the polymer composite. Magnetic alignment maximizes the thermal conductivity while minimizing composite stiffening at a fill fraction of half the maximum packing factor. The directional thermal conductivity of the composite is improved by more than 2-fold. Particle-particle contact engineering is then introduced to decrease the particle- particle boundary resistance and further improve the thermal conductivity of the composite.

The interface between rigid fill particles is a point contact with very little interfacial area connecting them. Silver and gallium-based liquid metal (LM) coatings provide soft interfaces that, under pressure, increase the interfacial area between particles and decrease the particle-particle boundary resistance. These engineered contacts are investigated both in and out of the polymer matrix and with and without magnetic alignment of the fill. Magnetically aligned in the polymer matrix, 350nm- thick silver coatings on nickel particles produce a 1.8-fold increase in composite thermal conductivity over the aligned bare-nickel composites. The LM coatings provide similar enhancements, but require higher volumes of LM to do so. This is due to the rapid formation of gallium oxide, which introduces additional thermal boundaries and decreases the benefit of the LM coatings.

The oxide shell of LM droplets (LMDs) can be ruptured using pressure. The pressure needed to rupture LMDs matches closely to thin-walled pressure vessel theory. Furthermore, the addition of tungsten particles stabilizes the mixture for use at higher pressures. Finally, thiols and hydrochloric acid weaken the oxide shell and boost the thermal performance of the beds of LMDs by 50% at pressures much lower than 1 megapascal (MPa) to make them more suitable for use in TIMs.
ContributorsRalphs, Matthew (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert Y (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Liping (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2019
171388-Thumbnail Image.png
Description
Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and

Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and filler particle connectivity in TIMs to achieve thermal percolation while maintaining mechanical compliance. Gallium-based liquid metal (LM) capsules offer a unique set of thermal-mechanical characteristics that make them suitable candidates for high-performance TIM fillers. This dissertation research focuses on resolving the fundamental challenges posed by integration of LM fillers in polymer matrix. First, the rupture mechanics of LM capsules under pressure is identified as a key factor that dictates the thermal connectivity between LM-based fillers. This mechanism of oxide “popping” in LM particle beds independent of the matrix material provides insights in overcoming the particle-particle connectivity challenges. Second, the physical barrier introduced due to the polymer matrix needs to be overcome to achieve thermal percolation. Matrix fluid viscosity impacts thermal transport, with high viscosity uncured matrix inhibiting the thermal bridging of fillers. In addition, incorporation of solid metal co-fillers that react with LM fillers is adopted to facilitate popping of LM oxide in uncured polymer to overcome this matrix barrier. Solid silver metal additives are used to rupture the LM oxide, form inter-metallic alloy (IMC), and act as thermal anchors within the matrix. This results in the formation of numerous thermal percolation paths and hence enhances heat transport within the composite. Further, preserving this microstructure of interconnected multiphase filler system with thermally conductive percolation pathways in a cured polymer matrix is critical to designing high-performing TIM pads. Viscosity of the precursor polymer solution prior to curing plays a major role in the resulting thermal conductivity. A multipronged strategy is developed that synergistically combines reactive solid and liquid fillers, a polymer matrix with low pre-cure viscosity, and mechanical compression during thermal curing. The results of this dissertation aim to provide fundamental insights into the integration of LMs in polymer composites and give design knobs to develop high thermally conducting soft composites.
ContributorsUppal, Aastha (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Kwon, Beomjin (Committee member) / Choksi, Gaurang (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2022