This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

149852-Thumbnail Image.png
Description
Negative bias temperature instability (NBTI) and channel hot carrier (CHC) are important reliability issues impacting analog circuit performance and lifetime. Compact reliability models and efficient simulation methods are essential for circuit level reliability prediction. This work proposes a set of compact models of NBTI and CHC effects for analog and

Negative bias temperature instability (NBTI) and channel hot carrier (CHC) are important reliability issues impacting analog circuit performance and lifetime. Compact reliability models and efficient simulation methods are essential for circuit level reliability prediction. This work proposes a set of compact models of NBTI and CHC effects for analog and mixed-signal circuit, and a direct prediction method which is different from conventional simulation methods. This method is applied in circuit benchmarks and evaluated. This work helps with improving efficiency and accuracy of circuit aging prediction.
ContributorsZheng, Rui (Author) / Cao, Yu (Thesis advisor) / Yu, Hongyu (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
171391-Thumbnail Image.png
Description
Bipolar commercial-off-the-shelf (COTS) circuits are increasingly used in spacemissions due to the low cost per part. In space environments these devices are exposed to ionizing radiation that degrades their performance. Testing to evaluate the performance of these devices is a costly and lengthy process. As such methods that can help predict a COTS

Bipolar commercial-off-the-shelf (COTS) circuits are increasingly used in spacemissions due to the low cost per part. In space environments these devices are exposed to ionizing radiation that degrades their performance. Testing to evaluate the performance of these devices is a costly and lengthy process. As such methods that can help predict a COTS part’s performance help alleviate these downsides. A modeling software for predicting total ionizing dose (TID), enhanced low dose rate sensitivity (ELDRS), and hydrogen gas on bipolar parts is introduced and expanded upon. The model is then developed in several key ways that expand it’s features and usability in this field. A physics based methodology of simulating interface traps (NIT) to expand the previously experimental only database is detailed. This new methodology is also compared to experimental data and used to establish a link between hydrogen concentration in the oxide and packaged hydrogen gas. Links are established between Technology Computer Aided Design (TCAD), circuit simulation, and experimental data. These links are then used to establish a better foundation for the model. New methodologies are added to the modeling software so that it is possible to simulate transient based characteristics like slew rate.
ContributorsRoark, Samuel (Author) / Barnaby, Hugh (Thesis advisor) / Sanchez Esqueda, Ivan (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2022