This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 10
Filtering by

Clear all filters

152110-Thumbnail Image.png
Description
In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used.

In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided.
ContributorsRosenbalm, Daniel Curtis (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra L. (Committee member) / Kavazanjian, Edward (Committee member) / Witczak, Mathew W (Committee member) / Arizona State University (Publisher)
Created2013
152596-Thumbnail Image.png
Description
This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count

This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count value variability alone (i.e., assuming all other aspects of the design problem do not contribute error or bias). Evaluated methods include Eurocode 7 Geotechnical Design procedures, the Federal Highway Administration drilled shaft LRFD design method, the Electric Power Research Institute transmission foundation design procedure and a site specific variability based approach previously suggested by the author of this thesis and others. The analysis method is defined by three phases: a) Evaluate the spatial variability of an existing subsurface database. b) Derive theoretical foundation designs from the database in accordance with the various design methods identified. c) Conduct Monti Carlo Simulations to compute the reliability of the theoretical foundation designs. Over several decades, reliability-based foundation design (RBD) methods have been developed and implemented to varying degrees for buildings, bridges, electric systems and other structures. In recent years, an effort has been made by researchers, professional societies and other standard-developing organizations to publish design guidelines, manuals and standards concerning RBD for foundations. Most of these approaches rely on statistical methods for quantifying load and resistance probability distribution functions with defined reliability levels. However, each varies with regard to the influence of site-specific variability on resistance. An examination of the influence of site-specific variability is required to provide direction for incorporating the concept into practical RBD design methods. Recent surveys of transmission line engineers by the Electric Power Research Institute (EPRI) demonstrate RBD methods for the design of transmission line foundations have not been widely adopted. In the absence of a unifying design document with established reliability goals, transmission line foundations have historically performed very well, with relatively few failures. However, such a track record with no set reliability goals suggests, at least in some cases, a financial premium has likely been paid.
ContributorsHeim, Zackary (Author) / Houston, Sandra (Thesis advisor) / Witczak, Matthew (Committee member) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
156066-Thumbnail Image.png
Description
Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies

Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies are not practical on typical projects due to the difficulties and duration needed for equilibration associated with the necessary laboratory testing. The current practice encompasses saturated “conventional” soil mechanics testing, with the implementation of numerous empirical correlations and approximations to obtain an estimate of true field response. However, it has been observed that full wetting rarely occurs in the field, leading to an over-conservatism within a given design when partial wetting conditions are ignored. Many researchers have sought to improve ways of estimation of soil heave/shrinkage through intense studies of the suction-based response of reconstituted clay soils. However, the natural behavior of an undisturbed clay soil sample tends to differ significantly from a remolded sample of the same material.

In this study, laboratory techniques for the determination of soil suction were evaluated, a methodology for determination of the in-situ matric suction of a soil specimen was explored, and the mechanical response to changes in matric suction of natural clay specimens were measured. Suction-controlled laboratory oedometer devices were used to impose partial wetting conditions, similar to those experienced in a natural setting. The undisturbed natural soils tested in the study were obtained from Denver, CO and San Antonio, TX.

Key differences between the soil water characteristic curves of the undisturbed specimen test compared to the conventional reconstituted specimen test are highlighted. The Perko et al. (2000) and the PTI (2008) methods for estimating the relationship between volume and changes in matric suction (i.e. suction compression index) were evaluated by comparison to the directly measured values. Lastly, the directly measured partial wetting swell strain was compared to the fully saturated, one-dimensional, oedometer test (ASTM D4546) and the Surrogate Path Method (Singhal, 2010) to evaluate the estimation of partial wetting heave.
ContributorsOlaiz, Austin Hunter (Author) / Houston, Sandra (Thesis advisor) / Zapata, Claudia (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2017
Description
One of the most economical and viable methods of soil improvement is dynamic compaction. It is a simple process that uses the potential energy of a weight (8 tonne to 36 tonne) dropped from a height of about 1 m to 30 m, depending on the project requirement, on to

One of the most economical and viable methods of soil improvement is dynamic compaction. It is a simple process that uses the potential energy of a weight (8 tonne to 36 tonne) dropped from a height of about 1 m to 30 m, depending on the project requirement, on to the soil to be compacted hence densifying it. However, dynamic compaction can only be applied on soil deposits where the degree of saturation is low and the permeability of the soil mass is high to allow for good drainage. Using dynamic compaction on saturated soil is unsuitable because upon application of the energy, a part of the energy is transferred to the pore water. The technique also does not work very well on soils having a large content of fines because of the absence of good drainage. The current research aims to develop a new technology using biogenic gas production to desaturate saturated soils and extend the use of dynamic compaction as a ground improvement technique to saturated soils with higher fines content. To evaluate the feasibility of this technology an experimental program has been performed. Soil columns with varying soil types have been saturated with substrate solution, resulting in the formation of nitrogen gas and the change in soils volume and saturation have been recorded. Cyclic triaxial tests have been performed to evaluate the change in volume and saturation under elevated pressure conditions and evaluate the response of the desaturated soil specimens to dynamic loading. The experimental results showed that soil specimens treated with MIDP under low confinement conditions undergo substantial volume expansion. The amount of expansion is seen to be a factor of their pore size, which is directly related to their grain size. The smaller the grain size, smaller is the pore size and hence greater the volume expansion. Under higher confining pressure conditions, the expansion during gas formation is suppressed. However, no conclusive result about the effect of the desaturation of the soil using biogenic gas on its compactibility could be obtained from the cyclic triaxial tests.
ContributorsBorah, Devajani (Author) / van Paassen, Leon A. (Thesis advisor) / Kavazanjian, Edward (Committee member) / Zapata, Claudia E. (Committee member) / Arizona State University (Publisher)
Created2018
155082-Thumbnail Image.png
Description
Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific

Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific studies were conducted by utilizing high-pressure devices, axisymmetric drop shape analysis (ADSA), microfluidics, time-lapse technology, Atomic Force Microscopy (AFM) to develop experiments. The effects of nanoparticle on modifying interfacial tension, wettability, viscosity, sweep efficiency and surface attraction forces were investigated. The results show that nanoparticles mixed in water can significantly reduce the interfacial tension of water in CO2 in the applications of nanofluid-CO2 flow in sediments; nanoparticle stabilized foam can be applied to isolate contaminants from clean soils in groundwater/soil remediation, as well as in CO2 geological sequestration or enhanced oil/gas recovery to dramatically improve the sweep efficiency; nanoparticle coatings are capable to increase the surface adhesion force so as to capture migrating fine particles to help prevent clogging near wellbore or in granular filter in the applications of oil and gas recovery, geological CO2 sequestration, geothermal recovery, contaminant transport, groundwater flow, and stormwater management system.
ContributorsZheng, Xianglei (Author) / Jang, Jaewon (Thesis advisor) / Zapata, Claudia (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2016
155853-Thumbnail Image.png
Description
Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may

Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may have arisen due to thermal and hydraulic gradients at the Atlantic City NAPTF and to evaluate their effect on the material stiffness and the California Bearing Ratio (CBR) strength parameter of the clay subgrade materials. Laboratory data showed that at the same water content, matric suction decreases with increasing temperature; and at the same suction, hydraulic conductivity increases with increasing temperature. Models developed, together with moisture/temperature data collected from 30 sensors installed in the test facility, yielded a maximum variation of suction in field of 155 psi and changes in hydraulic conductivity from 2.9E-9 m/s at 100% saturation to 8.1E-12 at 93% saturation. The maximum variation in temperature was found to be 20.8oC at the shallower depth and decreased with depth; while a maximum variation in moisture content was found to be 3.7% for Dupont clay and 4.4% for County clay. Models developed that predicts CBR as a function of dry density and moisture content yielded a maximum variation of CBR of 2.4 for Dupont clay and 2.9 for County clay. Additionally, models were developed relating the temperature with the bulk stress and octahedral stress applied on the subgrade for dual gear, dual tandem and triple tandem gear types for different tire loads. It was found that as the temperature increases the stresses increase. A Modified Cary and Zapata model was used for predicting the resilient modulus(Mr) of the subgrade. Using the models developed and the temperature/moisture changes observed in the field, the variation of suction, bulk and octahedral stresses were estimated, along with the resilient modulus for three different gear types. Results indicated that changes in Mr as large as 9 ksi occur in the soils studied due to the combined effect of external loads and environmental condition changes.
ContributorsThirthar Palanivelu, Pugazhvel (Author) / Zapata, Claudia E (Thesis advisor) / Kavazanjian, Edward (Committee member) / Houston, Sandra (Committee member) / Underwood, Shane (Committee member) / Arizona State University (Publisher)
Created2017
171480-Thumbnail Image.png
Description
The climate-driven volumetric response of unsaturated soils (shrink-swell and frost heave) frequently causes costly distresses in lightly loaded structures (pavements and shallow foundations) due to the sporadic climatic fluctuations and soil heterogeneity which is not captured during the geotechnical design. The complexity associated with the unsaturated soil mechanics combined with

The climate-driven volumetric response of unsaturated soils (shrink-swell and frost heave) frequently causes costly distresses in lightly loaded structures (pavements and shallow foundations) due to the sporadic climatic fluctuations and soil heterogeneity which is not captured during the geotechnical design. The complexity associated with the unsaturated soil mechanics combined with the high degree of variability in both the natural characteristics of soil and the empirical models which are commonly implemented tends to lead to engineering judgment outweighing the results of deterministic computations for the basis of design. Recent advances in the application of statistical techniques and Bayesian Inference in geotechnical modeling allows for the inclusion of both parameter and model uncertainty, providing a quantifiable representation of this invaluable engineering judgement. The overall goal achieved in this study was to develop, validate, and implement a new method to evaluate climate-driven volume change of shrink-swell soils using a framework that encompasses predominantly stochastic time-series techniques and mechanistic shrink-swell volume change computations. Four valuable objectives were accomplished during this research study while on the path to complete the overall goal: 1) development of an procedure for automating the selection of the Fourier Series form of the soil suction diffusion equations used to represent the natural seasonal variations in suction at the ground surface, 2) development of an improved framework for deterministic estimation of shrink-swell soil volume change using historical climate data and the Fourier series suction model, 3) development of a Bayesian approach to randomly generate combinations of correlated soil properties for use in stochastic simulations, and 4) development of a procedure to stochastically forecast the climatic parameters required for shrink-swell soil volume change estimations. The models presented can be easily implemented into existing foundation and pavement design procedures or used for forensic evaluations using historical data. For pavement design, the new framework for stochastically forecasting the variability of shrink-swell soil volume change provides significant improvement over the existing empirical models that have been used for more than four decades.
ContributorsOlaiz, Austin Hunter (Author) / Zapata, Claudia (Thesis advisor) / Houston, Sandra (Committee member) / Kavazanjian, Edward (Committee member) / Soltanpour, Yasser (Committee member) / Arizona State University (Publisher)
Created2022
171663-Thumbnail Image.png
Description
The presence of expansive soils underneath pavement structures is considered one of the most common sources of pavement distresses, due to differential settlements caused by differential moisture distribution attributed to soil heterogeneity and seasonal climatic fluctuations. The cost of the repairs to the infrastructure caused by expansive soils is estimated

The presence of expansive soils underneath pavement structures is considered one of the most common sources of pavement distresses, due to differential settlements caused by differential moisture distribution attributed to soil heterogeneity and seasonal climatic fluctuations. The cost of the repairs to the infrastructure caused by expansive soils is estimated to exceed 10 billion dollars annually in the US, as reported by Puppala and Cerato (2009). Although many studies have been developed to better understand the volume change of unsaturated soils and incorporate the effect of swelling/shrinkage behavior into pavement design procedures, current methodologies are still based on simple correlations with index properties or other empirical methods. Such solutions lead to poor or uneconomical design practices. The objective of this study was to calibrate and implement a new mechanistic, stochastic model that predicts pavement distresses caused by the presence of expansive soils. Three major tasks were completed to fulfill the objective of this study: 1) a laboratory research program performed to estimate the volume change of compacted specimens, with different expansion potential, due to the simultaneous application of suction and net normal stresses, 2) the calibration of a new mechanistic free-swell model for expansive soils tailored to pavement structures, based on elevation information collected from the Long Term Pavement Performance (LTPP) program, and 3) the incorporation and calibration of the free-swell stochastic model results into the current Pavement Mechanistic-Empirical (ME) Design procedure using the International Roughness Index (IRI) models. The results presented includes: 1) an empirical model to estimate volume change due to the coupled effect of suction, and net normal stresses, for soils with different soil index properties, 2) a calibrated model to adjust the free-swell results of the mechanistic-stochastic model developed by Olaiz et al. (2021), and 3) an updated IRI equation for asphalt concrete pavements to account for volume change fluctuations due to changes in suction stress conditions. The models presented can be easily implemented into currently available pavement design procedures and greatly improves over the existing empirical models that have been used for more than four decades.
ContributorsMosawi, Mohammad (Author) / Zapata, Claudia E (Thesis advisor) / Kavazanjian, Edward (Committee member) / Kaloush, Kamil E (Committee member) / Arizona State University (Publisher)
Created2022
Description
The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the

The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the perspective of soil mechanics. In this study, the razor clam was observed to burrow out of sands simply by extending and contracting its foot periodically. This upward burrowing gait is much simpler than its downward burrowing gait, which also involves opening/closing of the shell and dilation of the foot. The upward burrowing gait inspired the design of a self-burrowing-out soft robot, which drives itself out of sands naturally by extension and contraction through pneumatic inflation and deflation. A simplified analytical model was then proposed and explained the upward burrowing behavior of the robot and razor clams as the asymmetric nature of soil resistances applied on both ends due to the intrinsic stress gradient of sand deposits. To burrow downward, additional symmetry-breaking features are needed for the robot to increase the resistance in the upward burrowing direction and to decrease the resistance in the downward burrowing direction. A potential approach is by incorporating friction anisotropy, which was then experimentally demonstrated to affect the upward burrowing of the soft robot. The downward burrowing gait of razor clams provides another inspiration. By exploring the analogies between the downward burrowing gait and in-situ soil characterization methods, a clam-inspired shape-changing penetrator was designed and penetrated dry granular materials both numerically and experimentally. Results demonstrated that the shell opening not only contributes to forming a penetration anchor by compressing the surrounding particles, but also reduces the foot penetration resistance temporally by creating a stress arch above the foot; the shell closing facilitates the downward burrowing by reducing the friction resistance to the subsequent shell retraction. Findings from this research shed lights on the future design of a clam-inspired self-burrowing robot.
ContributorsHuang, Sichuan (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamidreza (Committee member) / Zapata, Claudia (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2020
161368-Thumbnail Image.png
Description
Microbially induced desaturation (MID) via denitrification is an emerging ground improvement technique to mitigate liquefaction by stimulating the metabolic processes of native bacteria to produce biogas, biominerals and biomass. The production of biogenic gas gradually lowers the degree of saturation of treated soils, thereby dampening the pore pressure response to

Microbially induced desaturation (MID) via denitrification is an emerging ground improvement technique to mitigate liquefaction by stimulating the metabolic processes of native bacteria to produce biogas, biominerals and biomass. The production of biogenic gas gradually lowers the degree of saturation of treated soils, thereby dampening the pore pressure response to cyclic loading. However, the production of these metabolic products also alters the hydraulic and mechanical properties of the soil. A series of four tank tests simulating two-dimensional plane strain conditions were performed to evaluate the effectiveness of MID and the resulting changes to the hydraulic properties of the soils. Previous studies have demonstrated the mechanical response for treated homogenous granular soils at the bench scale via vertical injection methods. However, limited knowledge is available on the impact of partial desaturation on the hydraulic properties of the soil, particularly in stratified formations. Treating larger granular soil specimens via lateral injection methods is important for the up-scaling and future commercialization of the process as it may affect injection strategies, and the distribution of substrates and metabolic products. Tank tests were performed on a layered natural soil sediment collected from Richmond, British Columbia, Canada, as well as layered and unlayered laboratory grade Ottawa sands of different grain size distributions. The results demonstrated the effectiveness of treatment upon macro-scale soil properties, and showed how gas formation, migration and entrapment, and resulting degree of desaturation and hydraulic conductivity are affected by micro and macro-stratifications in granular soils.
ContributorsStallings Young, Elizabeth Grace (Author) / Zapata, Claudia E (Thesis advisor) / van Paassen, Leon A (Thesis advisor) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2021