This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150657-Thumbnail Image.png
Description
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is widely accepted as the world's most abundant enzyme and represents the primary entry point for inorganic carbon into the biosphere. Rubisco's slow carboxylation rate of ribulose-1,5-bisphosphate (RuBP) and its susceptibility to inhibition has led some to term it the "bottle neck" of photosynthesis. In order to

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is widely accepted as the world's most abundant enzyme and represents the primary entry point for inorganic carbon into the biosphere. Rubisco's slow carboxylation rate of ribulose-1,5-bisphosphate (RuBP) and its susceptibility to inhibition has led some to term it the "bottle neck" of photosynthesis. In order to ensure that Rubisco remains uninhibited, plants require the catalytic chaperone Rubisco activase. Activase is a member of the AAA+ superfamily, ATPases associated with various cellular activities, and uses ATP hydrolysis as the driving force behind a conformational movement that returns activity to inhibited Rubisco active sites. A high resolution activase structure will be an essential tool for examining Rubisco/activase interactions as well as understanding the activase self-association phenomenon. Rubisco activase has long eluded crystallization, likely due to its infamous self-association (polydispersity). Therefore, a limited proteolysis approach was taken to identify soluble activase subdomains as potential crystallization targets. This process involves using proteolytic enzymes to cleave a protein into a few pieces and has previously proven successful in identifying crystallizable protein fragments. Limited proteolysis, utilizing two different proteolytic enzymes (alpha-chymotrypsin and trypsin), identified two tobacco activase products. The fragments that were identified appear to represent most of what is considered to be the AAA+ C-terminal all alpha-domain and some of the AAA+ N-terminal alpha beta alpha-domain. Identified fragments were cloned using the pET151/dTOPO. The project then moved towards cloning and recombinant protein expression in E. coli. NtAbeta(248-383) and NtAbeta(253-354) were successfully cloned, expressed, purified, and characterized through various biophysical techniques. A thermofluor assay of NtAbeta(248-383) revealed a melting temperature of about 30°C, indicating lower thermal stability compared with full-length activase at 43°C. Size exclusion chromatography suggested that NtAbeta(248-383) is monomeric. Circular dichroism was used to identify the secondary structure; a plurality of alpha-helices. NtAbeta(248-383) and NtAbeta(253-354) were subjected to crystallization trials.
ContributorsConrad, Alan (Author) / Wachter, Rebekka (Thesis advisor) / Moore, Thomas (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
153728-Thumbnail Image.png
Description
Adenosine triphosphate (ATP) is the universal chemical energy currency in most living cells, used to power many cellular reactions and generated by an enzyme supercomplex known as the ATP synthase, consisting of a hydrophilic F1 subcomplex and a membrane-bound FO subcomplex. Driven by the electrochemical gradient generated by the respiratory

Adenosine triphosphate (ATP) is the universal chemical energy currency in most living cells, used to power many cellular reactions and generated by an enzyme supercomplex known as the ATP synthase, consisting of a hydrophilic F1 subcomplex and a membrane-bound FO subcomplex. Driven by the electrochemical gradient generated by the respiratory or photosynthetic electron transport chain, the rotation of the FO domain drives movements of the central stalk in response to conformational changes in the F1 domain, in which the physical energy is converted into chemical energy through the condensation of ADP and Pi to ATP. The exact mechanism how ATP synthesis is coupled to proton translocation is not known as no structure of the intact ATP-synthase nor the intact FO subcomplex has been determined to date. Structural information may shed light on these mechanisms and aid in understanding how structural changed relate to its coupling to ATP synthesis. The work in this thesis has successful established a defined large-scale CF1FO isolation procedure resulting in high purity and high yield of this complex from spinach thylakoid membranes by incorporating a unique combination of biochemical methods will form the basis for the subsequent structural determination of this complex. Isolation began from the isolation of intact chloroplasts and the separation of intact thylakoid membranes. Both native and denaturing electrophoresis analyses clearly demonstrated that the purified CF1FO retains its quaternary structure consisting of the CF1 and CFO subcomplexes and nine subunits (five F1 subunits: α, β, γ, δ and ε, and four FO subunits: a, b, b' and c). Moreover, both ATP synthesis and hydrolysis activities were successfully detected using protein reconstitution in combination with acid-base incubation and in-gel ATPase assays, respectively. Furthermore, the ATP-synthase of H. modesticaldum, an anaerobic photosynthetic bacterium, was also isolated and characterized at the biochemical level. These biochemical characterizations directly influenced recent studies on the high-resolution structure determination of intact CF1FO using electron crystallography on two-dimensional crystals. The availability of the functionally intact CF1FO purified at a large scale will lead to studies that investigate the possible crystallization conditions to ultimately determine its three-dimensional structure at atomic resolution.
ContributorsYang, Jay-How (Author) / Fromme, Petra (Thesis advisor) / Redding, Kevin (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2015