This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

189297-Thumbnail Image.png
Description
This thesis encompasses a comprehensive research effort dedicated to overcoming the critical bottlenecks that hinder the current generation of neural networks, thereby significantly advancing their reliability and performance. Deep neural networks, with their millions of parameters, suffer from over-parameterization and lack of constraints, leading to limited generalization capabilities. In other

This thesis encompasses a comprehensive research effort dedicated to overcoming the critical bottlenecks that hinder the current generation of neural networks, thereby significantly advancing their reliability and performance. Deep neural networks, with their millions of parameters, suffer from over-parameterization and lack of constraints, leading to limited generalization capabilities. In other words, the complex architecture and millions of parameters present challenges in finding the right balance between capturing useful patterns and avoiding noise in the data. To address these issues, this thesis explores novel solutions based on knowledge distillation, enabling the learning of robust representations. Leveraging the capabilities of large-scale networks, effective learning strategies are developed. Moreover, the limitations of dependency on external networks in the distillation process, which often require large-scale models, are effectively overcome by proposing a self-distillation strategy. The proposed approach empowers the model to generate high-level knowledge within a single network, pushing the boundaries of knowledge distillation. The effectiveness of the proposed method is not only demonstrated across diverse applications, including image classification, object detection, and semantic segmentation but also explored in practical considerations such as handling data scarcity and assessing the transferability of the model to other learning tasks. Another major obstacle hindering the development of reliable and robust models lies in their black-box nature, impeding clear insights into the contributions toward the final predictions and yielding uninterpretable feature representations. To address this challenge, this thesis introduces techniques that incorporate simple yet powerful deep constraints rooted in Riemannian geometry. These constraints confer geometric qualities upon the latent representation, thereby fostering a more interpretable and insightful representation. In addition to its primary focus on general tasks like image classification and activity recognition, this strategy offers significant benefits in real-world applications where data scarcity is prevalent. Moreover, its robustness in feature removal showcases its potential for edge applications. By successfully tackling these challenges, this research contributes to advancing the field of machine learning and provides a foundation for building more reliable and robust systems across various application domains.
ContributorsChoi, Hongjun (Author) / Turaga, Pavan (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Wenwen (Committee member) / Fazli, Pooyan (Committee member) / Arizona State University (Publisher)
Created2023
187328-Thumbnail Image.png
Description
Models that learn from data are widely and rapidly being deployed today for real-world use, and have become an integral and embedded part of human lives. While these technological advances are exciting and impactful, such data-driven computer vision systems often fail in inscrutable ways. This dissertation seeks to study and

Models that learn from data are widely and rapidly being deployed today for real-world use, and have become an integral and embedded part of human lives. While these technological advances are exciting and impactful, such data-driven computer vision systems often fail in inscrutable ways. This dissertation seeks to study and improve the reliability of machine learning models from several perspectives including the development of robust training algorithms to mitigate the risks of such failures, construction of new datasets that provide a new perspective on capabilities of vision models, and the design of evaluation metrics for re-calibrating the perception of performance improvements. I will first address distribution shift in image classification with the following contributions: (1) two methods for improving the robustness of image classifiers to distribution shift by leveraging the classifier's failures into an adversarial data transformation pipeline guided by domain knowledge, (2) an interpolation-based technique for flagging out-of-distribution samples, and (3) an intriguing trade-off between distributional and adversarial robustness resulting from data modification strategies. I will then explore reliability considerations for \textit{semantic vision} models that learn from both visual and natural language data; I will discuss how logical and semantic sentence transformations affect the performance of vision--language models and my contributions towards developing knowledge-guided learning algorithms to mitigate these failures. Finally, I will describe the effort towards building and evaluating complex reasoning capabilities of vision--language models towards the long-term goal of robust and reliable computer vision models that can communicate, collaborate, and reason with humans.
ContributorsGokhale, Tejas (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Thesis advisor) / Ben Amor, Heni (Committee member) / Anirudh, Rushil (Committee member) / Arizona State University (Publisher)
Created2023
158817-Thumbnail Image.png
Description
Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units.

Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units. When designing and training machine learning systems, researchers often assume access to large quantities of data that capture different possible variations. Variations in the data is needed to incorporate desired invariance and robustness properties in the machine learning system, especially in the case of deep learning algorithms. However, it is very difficult to gather such data in a real-world setting. For example, in certain medical/healthcare applications, it is very challenging to have access to data from all possible scenarios or with the necessary amount of variations as required to train the system. Additionally, the over-parameterized and unconstrained nature of deep neural networks can cause them to be poorly trained and in many cases over-confident which, in turn, can hamper their reliability and generalizability. This dissertation is a compendium of my research efforts to address the above challenges. I propose building invariant feature representations by wedding concepts from topological data analysis and Riemannian geometry, that automatically incorporate the desired invariance properties for different computer vision applications. I discuss how deep learning can be used to address some of the common challenges faced when working with topological data analysis methods. I describe alternative learning strategies based on unsupervised learning and transfer learning to address issues like dataset shifts and limited training data. Finally, I discuss my preliminary work on applying simple orthogonal constraints on deep learning feature representations to help develop more reliable and better calibrated models.
ContributorsSom, Anirudh (Author) / Turaga, Pavan (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020
193413-Thumbnail Image.png
Description
Recently developed large language models have achieved remarkable success on a wide range of natural language tasks. Furthermore, they have been shown to possess an impressive ability to generate fluent and coherent text. Despite all the notable abilities of these models, there exist several efficiency and reliability related challenges. For

Recently developed large language models have achieved remarkable success on a wide range of natural language tasks. Furthermore, they have been shown to possess an impressive ability to generate fluent and coherent text. Despite all the notable abilities of these models, there exist several efficiency and reliability related challenges. For example, they are vulnerable to a phenomenon called 'hallucination' in which they generate text that is not factually correct and they also have a large number of parameters which makes their inference slow and computationally expensive. With the objective of taking a step closer towards further enabling the widespread adoption of the Natural Language Processing (NLP) systems, this dissertation studies the following question: how to effectively address the efficiency and reliability related concerns of the NLP systems? Specifically, to improve the reliability of models, this dissertation first presents an approach that actively detects and mitigates the hallucinations of LLMs using a retrieval augmented methodology. Note that another strategy to mitigate incorrect predictions is abstention from answering when error is likely, i.e., selective prediction. To this end, I present selective prediction approaches and conduct extensive experiments to demonstrate their effectiveness. Building on top of selective prediction, I also present post-abstention strategies that focus on reliably increasing the coverage of a selective prediction system without considerably impacting its accuracy. Furthermore, this dissertation covers multiple aspects of improving the efficiency including 'inference efficiency' (making model inferences in a computationally efficient manner without sacrificing the prediction accuracy), 'data sample efficiency' (efficiently collecting data instances for training a task-specific system), 'open-domain QA reader efficiency' (leveraging the external knowledge efficiently while answering open-domain questions), and 'evaluation efficiency' (comparing the performance of different models efficiently). In summary, this dissertation highlights several challenges pertinent to the efficiency and reliability involved in the development of NLP systems and provides effective solutions to address them.
ContributorsVarshney, Neeraj (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Gopalan, Nakul (Committee member) / Banerjee, Pratyay (Committee member) / Arizona State University (Publisher)
Created2024