This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

150019-Thumbnail Image.png
Description
Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java code that runs within a JVM to interoperate with applications or libraries that are written in other languages and compiled to the host CPU ISA. JNI plays an important role in embedded system as it provides a mechanism to interact with libraries specific to the platform. This thesis addresses the overhead incurred in the JNI due to reflection and serialization when objects are accessed on android based mobile devices. It provides techniques to reduce this overhead. It also provides an API to access objects through its reference through pinning its memory location. The Android emulator was used to evaluate the performance of these techniques and we observed that there was 5 - 10 % performance gain in the new Java Native Interface.
ContributorsChandrian, Preetham (Author) / Lee, Yann-Hang (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
149518-Thumbnail Image.png
Description
Embedded Networked Systems (ENS) consist of various devices, which are embedded into physical objects (e.g., home appliances, vehicles, buidlings, people). With rapid advances in processing and networking technologies, these devices can be fully connected and pervasive in the environment. The devices can interact with the physical world, collaborate to share

Embedded Networked Systems (ENS) consist of various devices, which are embedded into physical objects (e.g., home appliances, vehicles, buidlings, people). With rapid advances in processing and networking technologies, these devices can be fully connected and pervasive in the environment. The devices can interact with the physical world, collaborate to share resources, and provide context-aware services. This dissertation focuses on collaboration in ENS to provide smart services. However, there are several challenges because the system must be - scalable to a huge number of devices; robust against noise, loss and failure; and secure despite communicating with strangers. To address these challenges, first, the dissertation focuses on designing a mobile gateway called Mobile Edge Computing Device (MECD) for Ubiquitous Sensor Networks (USN), a type of ENS. In order to reduce communication overhead with the server, an MECD is designed to provide local and distributed management of a network and data associated with a moving object (e.g., a person, car, pet). Furthermore, it supports collaboration with neighboring MECDs. The MECD is developed and tested for monitoring containers during shipment from Singapore to Taiwan and reachability to the remote server was a problem because of variance in connectivity (caused by high temperature variance) and high interference. The unreachability problem is addressed by using a mesh networking approach for collaboration of MECDs in sending data to a server. A hierarchical architecture is proposed in this regard to provide multi-level collaboration using dynamic mesh networks of MECDs at one layer. The mesh network is evaluated for an intelligent container scenario and results show complete connectivity with the server for temperature range from 25°C to 65°C. Finally, the authentication of mobile and pervasive devices in ENS for secure collaboration is investigated. This is a challenging problem because mutually unknown devices must be verified without knowledge of each other's identity. A self-organizing region-based authentication technique is proposed that uses environmental sound to autonomously verify if two devices are within the same region. The experimental results show sound could accurately authenticate devices within a small region.
ContributorsKim, Su-jin (Author) / Gupta, Sandeep K. S. (Thesis advisor) / Dasgupta, Partha (Committee member) / Davulcu, Hasan (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2010
155085-Thumbnail Image.png
Description
High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such

High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such as STIP, HOG3D, and Dense Trajectories. These algorithms are often referred to as “handcrafted” features as they were deliberately designed based on some reasonable considerations. However, these algorithms may fail when dealing with high-level tasks or complex scene videos. Due to the success of using deep convolution neural networks (CNNs) to extract global representations for static images, researchers have been using similar techniques to tackle video contents. Typical techniques first extract spatial features by processing raw images using deep convolution architectures designed for static image classifications. Then simple average, concatenation or classifier-based fusion/pooling methods are applied to the extracted features. I argue that features extracted in such ways do not acquire enough representative information since videos, unlike images, should be characterized as a temporal sequence of semantically coherent visual contents and thus need to be represented in a manner considering both semantic and spatio-temporal information.

In this thesis, I propose a novel architecture to learn semantic spatio-temporal embedding for videos to support high-level video analysis. The proposed method encodes video spatial and temporal information separately by employing a deep architecture consisting of two channels of convolutional neural networks (capturing appearance and local motion) followed by their corresponding Fully Connected Gated Recurrent Unit (FC-GRU) encoders for capturing longer-term temporal structure of the CNN features. The resultant spatio-temporal representation (a vector) is used to learn a mapping via a Fully Connected Multilayer Perceptron (FC-MLP) to the word2vec semantic embedding space, leading to a semantic interpretation of the video vector that supports high-level analysis. I evaluate the usefulness and effectiveness of this new video representation by conducting experiments on action recognition, zero-shot video classification, and semantic video retrieval (word-to-video) retrieval, using the UCF101 action recognition dataset.
ContributorsHu, Sheng-Hung (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Liang, Jianming (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2016