This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155469-Thumbnail Image.png
Description
This PhD thesis consists of three main themes. The first part focusses on modeling of Silver (Ag)-Chalcogenide glass based resistive memory devices known as the Programmable Metallization Cell (PMC). The proposed models are examined with the Technology Computer Aided Design (TCAD) simulations. In order to find a relationship between electrochemistry

This PhD thesis consists of three main themes. The first part focusses on modeling of Silver (Ag)-Chalcogenide glass based resistive memory devices known as the Programmable Metallization Cell (PMC). The proposed models are examined with the Technology Computer Aided Design (TCAD) simulations. In order to find a relationship between electrochemistry and carrier-trap statistics in chalcogenide glass films, an analytical mapping for electron trapping is derived. Then, a physical-based model is proposed in order to explain the dynamic behavior of the photodoping mechanism in lateral PMCs. At the end, in order to extract the time constant of ChG materials, a method which enables us to determine the carriers’ mobility with and without the UV light exposure is proposed. In order to validate these models, the results of TCAD simulations using Silvaco ATLAS are also presented in the study, which show good agreement.

In the second theme of this dissertation, a new model is presented to predict single event transients in 1T-1R memory arrays as an inverter, where the PMC is modeled as a constant resistance while the OFF transistor is model as a diode in parallel to a capacitance. The model divides the output voltage transient response of an inverter into three time segments, where an ionizing particle striking through the drain–body junction of the OFF-state NMOS is represented as a photocurrent pulse. If this current source is large enough, the output voltage can drop to a negative voltage. In this model, the OFF-state NMOS is represented as the parallel combination of an ideal diode and the intrinsic capacitance of the drain–body junction, while a resistance represents an ON-state NMOS. The proposed model is verified by 3-D TCAD mixed-mode device simulations. In order to investigate the flexibility of the model, the effects of important parameters, such as ON-state PMOS resistance, doping concentration of p-region in the diode, and the photocurrent pulse are scrutinized.

The third theme of this dissertation develops various models together with TCAD simulations to model the behavior of different diamond-based devices, including PIN diodes and bipolar junction transistors (BJTs). Diamond is a very attractive material for contemporary power semiconductor devices because of its excellent material properties, such as high breakdown voltage and superior thermal conductivity compared to other materials. Collectively, this research project enhances the development of high power and high temperature electronics using diamond-based semiconductors. During the fabrication process of diamond-based devices, structural defects particularly threading dislocations (TDs), may affect the device electrical properties, and models were developed to account of such defects. Recognition of their behavior helps us understand and predict the performance of diamond-based devices. Here, the electrical conductance through TD sites is shown to be governed by the Poole-Frenkel emission (PFE) for the temperature (T) range of 323 K ˂ T ˂ 423 K. Analytical models were performed to fit with experimental data over the aforementioned temperature range. Next, the Silvaco Atlas tool, a drift-diffusion based TCAD commercial software, was used to model diamond-based BJTs. Here, some field plate methods are proposed in order to decrease the surface electric field. The models used in Atlas are modified to account for both hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond.
ContributorsSaremi, Mehdi (Author) / Goodnick, Stephen M (Thesis advisor) / Vasileska, Dragica (Committee member) / Kozicki, Michael N (Committee member) / Yu, Shimeng (Committee member) / Arizona State University (Publisher)
Created2017
149389-Thumbnail Image.png
Description
Implantable medical device technology is commonly used by doctors for disease management, aiding to improve patient quality of life. However, it is possible for these devices to be exposed to ionizing radiation during various medical therapeutic and diagnostic activities while implanted. This commands that these devices remain fully operational during,

Implantable medical device technology is commonly used by doctors for disease management, aiding to improve patient quality of life. However, it is possible for these devices to be exposed to ionizing radiation during various medical therapeutic and diagnostic activities while implanted. This commands that these devices remain fully operational during, and long after, radiation exposure. Many implantable medical devices employ standard commercial complementary metal-oxide-semiconductor (CMOS) processes for integrated circuit (IC) development, which have been shown to degrade with radiation exposure. This necessitates that device manufacturers study the effects of ionizing radiation on their products, and work to mitigate those effects to maintain a high standard of reliability. Mitigation can be completed through targeted radiation hardening by design (RHBD) techniques as not to infringe on the device operational specifications. This thesis details a complete radiation analysis methodology that can be implemented to examine the effects of ionizing radiation on an IC as part of RHBD efforts. The methodology is put into practice to determine the failure mechanism in a charge pump circuit, common in many of today's implantable pacemaker designs, as a case study. Charge pump irradiation data shows a reduction of circuit output voltage with applied dose. Through testing of individual test devices, the response is identified as parasitic inter-device leakage caused by trapped oxide charge buildup in the isolation oxides. A library of compact models is generated to represent isolation oxide parasitics based on test structure data along with 2-Dimensional structure simulation results. The original charge pump schematic is then back-annotated with transistors representative of the parasitic. Inclusion of the parasitic devices in schematic allows for simulation of the entire circuit, accounting for possible parasitic devices activated by radiation exposure. By selecting a compact model for the parasitics generated at a specific dose, the compete circuit response is then simulated at the defined dose. The reduction of circuit output voltage with dose is then re-created in a radiation-enabled simulation validating the analysis methodology.
ContributorsSchlenvogt, Garrett (Author) / Barnaby, Hugh J (Thesis advisor) / Goodnick, Stephen (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2010