This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

153387-Thumbnail Image.png
Description
A core principle in multiple national quality improvement strategies is the engagement of chronically ill patients in the creation and execution of their treatment plans. Numerous initiatives are underway to use health information technology (HIT) to support patient engagement however the use of HIT and other factors such as health

A core principle in multiple national quality improvement strategies is the engagement of chronically ill patients in the creation and execution of their treatment plans. Numerous initiatives are underway to use health information technology (HIT) to support patient engagement however the use of HIT and other factors such as health literacy may be significant barriers to engagement for older adults. This qualitative descriptive study sought to explore the ways that older adults with multi-morbidities engaged with their plan of care. Forty participants were recruited through multiple case sampling from two ambulatory cardiology practices. Participants were English-speaking, without a dementia-related diagnosis, and between the ages of 65 and 86. The older adults in this study performed many behaviors to engage in the plan of care, including acting in ways to support health, managing health-related information, attending routine visits with their doctors, and participating in treatment planning. A subset of patients engaged in active decision-making because of the point they were at in their chronic disease. At that cross roads, they expressed uncertainly over which road to travel. Two factors influenced the engagement of older adults: a relationship with the provider that met the patient's needs, and the distribution of a Meaningful Use clinical summary at the conclusion of the provider visit. Participants described the ways in which the clinical summary helped and hindered their understanding of the care plan.

Insights gained as a result of this study include an understanding of the discrepancies between what the healthcare system expects of patients and their actual behavior when it comes to the creation of a care plan and the ways in which they take care of their health. Further research should examine the ability of various factors to enhance patient engagement. For example, it may be useful to focus on ways to improve the clinical summary to enhance engagement with the care plan and meet standards for a health literate document. Recommendations for the improvement of the clinical summary are provided. Finally, this study explored potential reasons for the infrequent use of online health information by older adults including the trusting relationship they enjoyed with their cardiologist.
ContributorsJiggins Colorafi, Karen (Author) / Lamb, Gerri (Thesis advisor) / Marek, Karen (Committee member) / Greenes, Robert (Committee member) / Evans, Bronwynne (Committee member) / Arizona State University (Publisher)
Created2015
156777-Thumbnail Image.png
Description
Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR)

Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR) ecosystems for purposes of orchestrating the user experiences of patients and clinicians. To date, the gap between knowledge representation and user-facing EHR integration has been considered an “implementation concern” requiring unscalable manual human efforts and governance coordination. Drafting a questionnaire engineered to meet the specifications of the HL7 CDS Knowledge Artifact specification, for example, carries no reasonable expectation that it may be imported and deployed into a live system without significant burdens. Dramatic reduction of the time and effort gap in the research and application cycle could be revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of functional boundaries in the knowledge management lifecycle, as well as formalization of the human processes by which this occurs.

This research introduces ARTAKA: Architecture for Real-Time Application of Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both provider heath IT (HIT) and vendor organizations to incrementally introduce value into existing systems dynamically. This is made possible by service-ization of curated knowledge artifacts, then injected into a highly scalable backend infrastructure by automated orchestration through public marketplaces. Supplementary examples of client app integration are also provided. Compilation of knowledge into platform-specific form has been left flexible, in so far as implementations comply with ARTAKA’s Context Event Service (CES) communication and Health Services Platform (HSP) Marketplace service packaging standards.

Towards the goal of interoperable human processes, ARTAKA’s treatment of knowledge artifacts as a specialized form of software allows knowledge engineers to operate as a type of software engineering practice. Thus, nearly a century of software development processes, tools, policies, and lessons offer immediate benefit: in some cases, with remarkable parity. Analyses of experimentation is provided with guidelines in how choice aspects of software development life cycles (SDLCs) apply to knowledge artifact development in an ARTAKA environment.

Portions of this culminating document have been further initiated with Standards Developing Organizations (SDOs) intended to ultimately produce normative standards, as have active relationships with other bodies.
ContributorsLee, Preston Victor (Author) / Dinu, Valentin (Thesis advisor) / Sottara, Davide (Committee member) / Greenes, Robert (Committee member) / Arizona State University (Publisher)
Created2018
154663-Thumbnail Image.png
Description
Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems

Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1–6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.
ContributorsEmadzadeh, Ehsan (Author) / Gonzalez, Graciela (Thesis advisor) / Greenes, Robert (Committee member) / Scotch, Matthew (Committee member) / Arizona State University (Publisher)
Created2016
162000-Thumbnail Image.png
Description
Usability problems associated with electronic health records can adversely impact clinical workflow, leading to inefficiencies, error, and even clinician burnout. The work presented in this dissertation is concerned with understanding and improving clinical workflow. Towards that end, it is necessary to model physical and cognitive aspects of task performance in

Usability problems associated with electronic health records can adversely impact clinical workflow, leading to inefficiencies, error, and even clinician burnout. The work presented in this dissertation is concerned with understanding and improving clinical workflow. Towards that end, it is necessary to model physical and cognitive aspects of task performance in clinical settings. Task completion can be significantly impacted by the navigational efficiency of the electronic health record (EHR) interface. Workflow modeling of the EHR-mediated workflow could help identify, diagnose and eliminate problems to reduce navigational complexity. The research goal is to introduce and validate a new biomedical informatics methodological workflow analysis framework that combines expert-based and user-based techniques to guide effective EHR design and reduce navigational complexity. These techniques are combined into a modified walkthrough that aligns user goals and subgoals with estimated task completion time and characterization of cognitive demands. A two-phased validation of the framework is utilized. The first is applied to single EHR-mediated workflow tasks, medication reconciliation (MedRec), and medication administration records (MAR) to refine individual aspects of the framework. The second phase applied the framework to a pre/post EHR implementation comparative analysis of multiple workflows tasks. This validation provides evidence of the framework's applicability and feasibility across several sites, systems, and settings. Analysis of the steps executed within the interfaces involved to complete the medication administration and medication reconciliation and patient order management tasks have provided a basis for characterizing the complexities in EHR navigation. An implication of the work presented here is that small tractable changes in interface design may substantially improve EHR navigation, overall usability, and workflow. The navigational complexity framework enables scrutinizing the impact of different EHR interfaces on task performance and usability barriers across different sites, systems, and settings.
ContributorsDuncan, Benjamin (Author) / Grando, Adela (Thesis advisor) / Doebbeling, Bradley (Thesis advisor) / Kaufman, David (Committee member) / Greenes, Robert (Committee member) / Arizona State University (Publisher)
Created2021