This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

157051-Thumbnail Image.png
Description

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT;

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT; wet bulb globe temperature [WBGT] = 31.6°C) and again on a moderate day (MOD; WBGT = 19.0°C). Physiological and performance measures were made before and throughout the course of each hike. Mean pre-hike hydration status (urine specific gravity [USG]) indicated that participants began both HOT and MOD trials in a euhydrated state (1.016 ± 0.010 and 1.010 ± 0.008, respectively) and means did not differ significantly between trials (p = .085). Time trial performance was impaired by -11% (11.1 minutes) in the HOT trial (105 ± 21.7 min), compared to MOD (93.9 ± 13.1 min) (p = .013). Peak core temperatures were significantly higher in HOT (38.5 ± 0.36°C) versus MOD (38.0 ± 0.30°C) with progressively increasing differences between trials over time (p < .001). Peak ratings of perceived exertion were significantly higher in HOT (14.2 ± 2.38) compared to MOD (11.9 ± 2.02) (p = .007). Relative intensity (percent of age-predicted maximal heart rate [HR]), estimated absolute intensity (metabolic equivalents [METs]), and estimated energy expenditure (MET-h) were all increased in HOT, but not significantly so. The HOT condition reduced predicted maximal aerobic capacity (CRFp) by 6% (p = .026). Sweat rates differed significantly between HOT (1.38 ± 0.53 L/h) and MOD (0.84 ± 0.27 L/h) (p = .01). Percent body mass loss (PBML) did not differ significantly between HOT (1.06 ± 0.95%) and MOD (0.98 ± 0.84%) (p = .869). All repeated measures variables showed significant between-subjects effects (p < .05), indicating individual differences in response to test conditions. Heat stress was shown to negatively affect physiological and performance measures in recreational mountain hikers. However, considerable variation exists between individuals, and the degree of physiological and performance impairment is probably due, in part, to differences in aerobic fitness and acclimatization status rather than pre- or during-performance hydration status.

ContributorsLinsell, Joshua (Author) / Wardenaar, Floris (Thesis advisor) / Berger, Christopher (Committee member) / Forzani, Erica (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
158645-Thumbnail Image.png
Description
Extracellular vesicles (EVs) are membranous particles that are abundantly secreted in the circulation system by most cells and can be found in most biological fluids. Among different EV subtypes, exosomes are small particles (30 – 150 nm) that are generated through the double invagination of the lipid bilayer membrane of

Extracellular vesicles (EVs) are membranous particles that are abundantly secreted in the circulation system by most cells and can be found in most biological fluids. Among different EV subtypes, exosomes are small particles (30 – 150 nm) that are generated through the double invagination of the lipid bilayer membrane of cell. Therefore, they mirror the cell membrane proteins and contain proteins, RNAs, and DNAs that can represent the phenotypic state of their cell of origin, hence considered promising biomarker candidates. Importantly, in most pathological conditions, such as cancer and infection, diseased cells secrete more EVs and the disease associated exosomes have shown great potential to serve as biomarkers for early diagnosis, disease staging, and treatment monitoring. However, using EVs as diagnostic or prognostic tools in the clinic is hindered by the lack of a rapid, sensitive, purification-free technique for their isolation and characterization. Developing standardized assays that can translate the emerging academic EV biomarker discoveries to clinically relevant procedures is a bottleneck that have slowed down advancements in medical research. Integrating widely known immunoassays with plasmonic sensors has shown the promise to detect minute amounts of antigen present in biological sample, based on changes of ambient optical refractive index, and achieve ultra-sensitivity. Plasmonic sensors take advantage of the enhanced interaction of electromagnetic radiations with electron clouds of plasmonic materials at the dielectric-metal interface in tunable wavelengths.
ContributorsAmrollahi, Pouy (Author) / Wang, Xiao (Thesis advisor) / Forzani, Erica (Committee member) / Hu, Tony Ye (Committee member) / Arizona State University (Publisher)
Created2020