This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 11
Filtering by

Clear all filters

Description
Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and

Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and offload the compute load to the server. But offloading large amounts of raw camera feeds takes longer latencies and poses difficulties for real-time applications. By capturing and computing on the edge, we can closely integrate the systems and optimize for low latency. However, moving the traditional stitching algorithms to battery constrained device needs at least three orders of magnitude reduction in power. We believe that close integration of capture and compute stages will lead to reduced overall system power.

We approach the problem by building a hardware prototype and characterize the end-to-end system bottlenecks of power and performance. The prototype has 6 IMX274 cameras and uses Nvidia Jetson TX2 development board for capture and computation. We found that capturing is bottlenecked by sensor power and data-rates across interfaces, whereas compute is limited by the total number of computations per frame. Our characterization shows that redundant capture and redundant computations lead to high power, huge memory footprint, and high latency. The existing systems lack hardware-software co-design aspects, leading to excessive data transfers across the interfaces and expensive computations within the individual subsystems. Finally, we propose mechanisms to optimize the system for low power and low latency. We emphasize the importance of co-design of different subsystems to reduce and reuse the data. For example, reusing the motion vectors of the ISP stage reduces the memory footprint of the stereo correspondence stage. Our estimates show that pipelining and parallelization on custom FPGA can achieve real time stitching.
ContributorsGunnam, Sridhar (Author) / LiKamWa, Robert (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2018
155083-Thumbnail Image.png
Description
Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a

Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a LIDAR, a color camera and a thermal camera to build RGB-Depth-Thermal (RGBDT) maps is investigated. An algorithm that solves a non-linear optimization problem to compute the relative pose between the cameras and the LIDAR is presented. The relative pose estimate is then used to find the color and thermal texture of each LIDAR point. Next, the various sources of error that can cause the mis-coloring of a LIDAR point after the cross- calibration are identified. Theoretical analyses of these errors reveal that the coloring errors due to noisy LIDAR points, errors in the estimation of the camera matrix, and errors in the estimation of translation between the sensors disappear with distance. But errors in the estimation of the rotation between the sensors causes the coloring error to increase with distance.

On a robot (vehicle) with multiple sensors, sensor fusion algorithms allow us to represent the data in the vehicle frame. But data acquired temporally in the vehicle frame needs to be registered in a global frame to obtain a map of the environment. Mapping techniques involving the Iterative Closest Point (ICP) algorithm and the Normal Distributions Transform (NDT) assume that a good initial estimate of the transformation between the 3D scans is available. This restricts the ability to stitch maps that were acquired at different times. Mapping can become flexible if maps that were acquired temporally can be merged later. To this end, the second part of this thesis focuses on developing an automated algorithm that fuses two maps by finding a congruent set of five points forming a pyramid.

Mapping has various application domains beyond Robot Navigation. The third part of this thesis considers a unique application domain where the surface displace- ments caused by an earthquake are to be recovered using pre- and post-earthquake LIDAR data. A technique to recover the 3D surface displacements is developed and the results are presented on real earthquake datasets: El Mayur Cucupa earthquake, Mexico, 2010 and Fukushima earthquake, Japan, 2011.
ContributorsKrishnan, Aravindhan K (Author) / Saripalli, Srikanth (Thesis advisor) / Klesh, Andrew (Committee member) / Fainekos, Georgios (Committee member) / Thangavelautham, Jekan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2016
155085-Thumbnail Image.png
Description
High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such

High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such as STIP, HOG3D, and Dense Trajectories. These algorithms are often referred to as “handcrafted” features as they were deliberately designed based on some reasonable considerations. However, these algorithms may fail when dealing with high-level tasks or complex scene videos. Due to the success of using deep convolution neural networks (CNNs) to extract global representations for static images, researchers have been using similar techniques to tackle video contents. Typical techniques first extract spatial features by processing raw images using deep convolution architectures designed for static image classifications. Then simple average, concatenation or classifier-based fusion/pooling methods are applied to the extracted features. I argue that features extracted in such ways do not acquire enough representative information since videos, unlike images, should be characterized as a temporal sequence of semantically coherent visual contents and thus need to be represented in a manner considering both semantic and spatio-temporal information.

In this thesis, I propose a novel architecture to learn semantic spatio-temporal embedding for videos to support high-level video analysis. The proposed method encodes video spatial and temporal information separately by employing a deep architecture consisting of two channels of convolutional neural networks (capturing appearance and local motion) followed by their corresponding Fully Connected Gated Recurrent Unit (FC-GRU) encoders for capturing longer-term temporal structure of the CNN features. The resultant spatio-temporal representation (a vector) is used to learn a mapping via a Fully Connected Multilayer Perceptron (FC-MLP) to the word2vec semantic embedding space, leading to a semantic interpretation of the video vector that supports high-level analysis. I evaluate the usefulness and effectiveness of this new video representation by conducting experiments on action recognition, zero-shot video classification, and semantic video retrieval (word-to-video) retrieval, using the UCF101 action recognition dataset.
ContributorsHu, Sheng-Hung (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Liang, Jianming (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2016
171844-Thumbnail Image.png
Description
Severe forms of mental illness, such as schizophrenia and bipolar disorder, are debilitating conditions that negatively impact an individual's quality of life. Additionally, they are often difficult and expensive to diagnose and manage, placing a large burden on society. Mental illness is typically diagnosed by the use of clinical interviews

Severe forms of mental illness, such as schizophrenia and bipolar disorder, are debilitating conditions that negatively impact an individual's quality of life. Additionally, they are often difficult and expensive to diagnose and manage, placing a large burden on society. Mental illness is typically diagnosed by the use of clinical interviews and a set of neuropsychiatric batteries; a key component of nearly all of these evaluations is some spoken language task. Clinicians have long used speech and language production as a proxy for neurological health, but most of these assessments are subjective in nature. Meanwhile, technological advancements in speech and natural language processing have grown exponentially over the past decade, increasing the capacity of computer models to assess particular aspects of speech and language. For this reason, many have seen an opportunity to leverage signal processing and machine learning applications to objectively assess clinical speech samples in order to automatically compute objective measures of neurological health. This document summarizes several contributions to expand upon this body of research. Mainly, there is still a large gap between the theoretical power of computational language models and their actual use in clinical applications. One of the largest concerns is the limited and inconsistent reliability of speech and language features used in models for assessing specific aspects of mental health; numerous methods may exist to measure the same or similar constructs and lead researchers to different conclusions in different studies. To address this, a novel measurement model based on a theoretical framework of speech production is used to motivate feature selection, while also performing a smoothing operation on features across several domains of interest. Then, these composite features are used to perform a much wider range of analyses than is typical of previous studies, looking at everything from diagnosis to functional competency assessments. Lastly, potential improvements to address practical implementation challenges associated with the use of speech and language technology in a real-world environment are investigated. The goal of this work is to demonstrate the ability of speech and language technology to aid clinical practitioners toward improvements in quality of life outcomes for their patients.
ContributorsVoleti, Rohit Nihar Uttam (Author) / Berisha, Visar (Thesis advisor) / Liss, Julie M (Thesis advisor) / Turaga, Pavan (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2022
157866-Thumbnail Image.png
Description
This thesis addresses the problem of recommending a viewpoint for aesthetic photography. Viewpoint recommendation is suggesting the best camera pose to capture a visually pleasing photograph of the subject of interest by using any end-user device such as drone, mobile robot or smartphone. Solving this problem enables to capture visually

This thesis addresses the problem of recommending a viewpoint for aesthetic photography. Viewpoint recommendation is suggesting the best camera pose to capture a visually pleasing photograph of the subject of interest by using any end-user device such as drone, mobile robot or smartphone. Solving this problem enables to capture visually pleasing photographs autonomously in areal photography, wildlife photography, landscape photography or in personal photography.

The viewpoint recommendation problem can be divided into two stages: (a) generating a set of dense novel views based on the basis views captured about the subject. The dense novel views are useful to better understand the scene and to know how the subject looks from different viewpoints and (b) each novel is scored based on how aesthetically good it is. The viewpoint with the greatest aesthetic score is recommended for capturing a visually pleasing photograph.
ContributorsKatukuri, Sathish Kumar (Author) / LiKamWa, Robert (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019
Description
The autonomous vehicle technology has come a long way, but currently, there are no companies that are able to offer fully autonomous ride in any conditions, on any road without any human supervision. These systems should be extensively trained and validated to guarantee safe human transportation. Any small errors in

The autonomous vehicle technology has come a long way, but currently, there are no companies that are able to offer fully autonomous ride in any conditions, on any road without any human supervision. These systems should be extensively trained and validated to guarantee safe human transportation. Any small errors in the system functionality may lead to fatal accidents and may endanger human lives. Deep learning methods are widely used for environment perception and prediction of hazardous situations. These techniques require huge amount of training data with both normal and abnormal samples to enable the vehicle to avoid a dangerous situation.



The goal of this thesis is to generate simulations from real-world tricky collision scenarios for training and testing autonomous vehicles. Dashcam crash videos from the internet can now be utilized to extract valuable collision data and recreate the crash scenarios in a simulator. The problem of extracting 3D vehicle trajectories from videos recorded by an unknown monocular camera source is solved using a modular approach. The framework is divided into two stages: (a) extracting meaningful adversarial trajectories from short crash videos, and (b) developing methods to automatically process and simulate the vehicle trajectories on a vehicle simulator.
ContributorsBashetty, Sai Krishna (Author) / Fainkeos, Georgios (Thesis advisor) / Amor, Heni Ben (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2019
158896-Thumbnail Image.png
Description
Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options

Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options for size-constraint applications, and while they may offer several advantages, they also usually are limited by image quality degradation due to optical or a need to reconstruct a captured image. In this thesis, we take a look at three of these non-traditional cameras: a pinhole camera, a diffusion-mask lensless camera, and an under-display camera (UDC).

For each of these cases, I present a feasible image restoration pipeline to correct for their particular limitations. For the pinhole camera, I present an early pipeline to allow for practical pinhole photography by reducing noise levels caused by low-light imaging, enhancing exposure levels, and sharpening the blur caused by the pinhole. For lensless cameras, we explore a neural network architecture that performs joint image reconstruction and point spread function (PSF) estimation to robustly recover images captured with multiple PSFs from different cameras. Using adversarial learning, this approach achieves improved reconstruction results that do not require explicit knowledge of the PSF at test-time and shows an added improvement in the reconstruction model’s ability to generalize to variations in the camera’s PSF. This allows lensless cameras to be utilized in a wider range of applications that require multiple cameras without the need to explicitly train a separate model for each new camera. For UDCs, we utilize a multi-stage approach to correct for low light transmission, blur, and haze. This pipeline uses a PyNET deep neural network architecture to perform a majority of the restoration, while additionally using a traditional optimization approach which is then fused in a learned manner in the second stage to improve high-frequency features. I show results from this novel fusion approach that is on-par with the state of the art.
ContributorsRego, Joshua D (Author) / Jayasuriya, Suren (Thesis advisor) / Blain Christen, Jennifer (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020
158291-Thumbnail Image.png
Description
This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is

This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is based on the variational principle to differentiate hard cluster assignments, which was missing in the literature. This thesis shows multiple techniques to regularize and generalize OT to cope with various tasks including clustering, aligning, and interpolating distributional data. It also discusses the connections of the new formulation to other OT and clustering formulations to better understand their gaps and the means to close them. Finally, this thesis demonstrates the advantages of the proposed OT techniques in solving machine learning problems and their downstream applications in computer graphics, computer vision, and image processing.
ContributorsMi, Liang (Author) / Wang, Yalin (Thesis advisor) / Chen, Kewei (Committee member) / Karam, Lina (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020
161270-Thumbnail Image.png
Description
A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for data compression, compressive sensing and reconstruction, and compressed learning (learning

A massive volume of data is generated at an unprecedented rate in the information age. The growth of data significantly exceeds the computing and storage capacities of the existing digital infrastructure. In the past decade, many methods are invented for data compression, compressive sensing and reconstruction, and compressed learning (learning directly upon compressed data) to overcome the data-explosion challenge. While prior works are predominantly model-based, focus on small models, and not suitable for task-oriented sensing or hardware acceleration, the number of available models for compression-related tasks has escalated by orders of magnitude in the past decade. Motivated by this significant growth and the success of big data, this dissertation proposes to revolutionize both the compressive sensing reconstruction (CSR) and compressed learning (CL) methods from the data-driven perspective. In this dissertation, a series of topics on data-driven CSR are discussed. Individual data-driven models are proposed for the CSR of bio-signals, images, and videos with improved compression ratio and recovery fidelity trade-off. Specifically, a scalable Laplacian pyramid reconstructive adversarial network (LAPRAN) is proposed for single-image CSR. LAPRAN progressively reconstructs images following the concept of the Laplacian pyramid through the concatenation of multiple reconstructive adversarial networks (RANs). For the CSR of videos, CSVideoNet is proposed to improve the spatial-temporal resolution of reconstructed videos. Apart from CSR, data-driven CL is discussed in the dissertation. A CL framework is proposed to extract features directly from compressed data for image classification, objection detection, and semantic/instance segmentation. Besides, the spectral bias of neural networks is analyzed from the frequency perspective, leading to a learning-based frequency selection method for identifying the trivial frequency components which can be removed without accuracy loss. Compared with the conventional spatial downsampling approaches, the proposed frequency-domain learning method can achieve higher accuracy with reduced input data size. The methodologies proposed in this dissertation are not restricted to the above-mentioned applications. The dissertation also discusses other potential applications and directions for future research.
ContributorsXu, Kai (Author) / Ren, Fengbo (Thesis advisor) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161945-Thumbnail Image.png
Description
Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand,

Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand, the outer surface along with its enclosed internal volume can be taken as a three-dimensional embedding of interests. Most studies focus on the surface-based perspective by leveraging the intrinsic features on the tangent plane. But a two-dimensional model may fail to fully represent the realistic properties of shapes with both intrinsic and extrinsic properties. In this thesis, severalStochastic Partial Differential Equations (SPDEs) are thoroughly investigated and several methods are originated from these SPDEs to try to solve the problem of both two-dimensional and three-dimensional shape analyses. The unique physical meanings of these SPDEs inspired the findings of features, shape descriptors, metrics, and kernels in this series of works. Initially, the data generation of high-dimensional shapes, here, the tetrahedral meshes, is introduced. The cerebral cortex is taken as the study target and an automatic pipeline of generating the gray matter tetrahedral mesh is introduced. Then, a discretized Laplace-Beltrami operator (LBO) and a Hamiltonian operator (HO) in tetrahedral domain with Finite Element Method (FEM) are derived. Two high-dimensional shape descriptors are defined based on the solution of the heat equation and Schrödinger’s equation. Considering the fact that high-dimensional shape models usually contain massive redundancies, and the demands on effective landmarks in many applications, a Gaussian process landmarking on tetrahedral meshes is further studied. A SIWKS-based metric space is used to define a geometry-aware Gaussian process. The study of the periodic potential diffusion process further inspired the idea of a new kernel call the geometry-aware convolutional kernel. A series of Bayesian learning methods are then introduced to tackle the problem of shape retrieval and classification. Experiments of every single item are demonstrated. From the popular SPDE such as the heat equation and Schrödinger’s equation to the general potential diffusion equation and the specific periodic potential diffusion equation, it clearly shows that classical SPDEs play an important role in discovering new features, metrics, shape descriptors and kernels. I hope this thesis could be an example of using interdisciplinary knowledge to solve problems.
ContributorsFan, Yonghui (Author) / Wang, Yalin (Thesis advisor) / Lepore, Natasha (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021