This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
187492-Thumbnail Image.png
Description
High-entropy alloys (HEAs) is a new class of materials which have been studied heavily due to their special mechanical properties. HEAs refers to alloys with multiple equimolar or nearly equimolar elements. HEAs show exceptional and attractive properties currently absent from conventional alloys, which make them the center of intense investigation.

High-entropy alloys (HEAs) is a new class of materials which have been studied heavily due to their special mechanical properties. HEAs refers to alloys with multiple equimolar or nearly equimolar elements. HEAs show exceptional and attractive properties currently absent from conventional alloys, which make them the center of intense investigation. HEAs obtain their properties from four core effects that they exhibit and most of the work on them have been dedicated to study their mechanical properties. In contrast, little or no research have gone into studying the functional or even thermal properties of HEAs. Some HEAs have also shown exceptional or very high melting points. According to the definition of HEAs, Si-Ge-Sn alloys with equal or comparable concentrations of the three group IV elements belong to the category of HEAs. Thus, the equimolar components of Si-Ge-Sn alloys probably allow their atomic structures to display the same fundamental effects of metallic HEAs. The experimental fabrication of such alloys has been proven to be very difficult, which is mainly due to differences between the properties of their constituent elements, as indicated from their binary phase diagrams. However, previous computational studies have shown that SiGeSn HEAs have some very interesting properties, such as high electrical conductivity, low thermal conductivity and semiconducting properties. In this work, going for a complete characterization of the SiGeSn HEA properties, the melting point of this alloy is studied using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The aim is to investigate the effects of high Sn content in this alloy on the melting point compared with the traditional SiGe alloys. Classical MD simulations results strongly indicates that none of the available empirical potentials is able to predict accurate or reasonable melting points for SiGeSn HEAs and most of its subsystems. DFT calculations results show that SiGeSn HEA have a melting point which represent the mean value of its constituent elements and that no special deviations are found. This work contributes to the study of SiGeSn HEA properties, which can serve as guidance before the successful experimental fabrication of this alloy.
ContributorsAlqaisi, Ahmad Madhat Odeh (Author) / Hong, Qi-Jun (Thesis advisor) / Zhuang, Houlong (Thesis advisor) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2023
158739-Thumbnail Image.png
Description
The structural and electronic properties of compositionally complex semiconductors have long been of both theoretical interest and engineering importance. As a new class of materials with an intrinsic compositional complexity, medium entropy alloys (MEAs) are immensely studied mainly for their excellent mechanical properties. The electronic properties of MEAs, however, are

The structural and electronic properties of compositionally complex semiconductors have long been of both theoretical interest and engineering importance. As a new class of materials with an intrinsic compositional complexity, medium entropy alloys (MEAs) are immensely studied mainly for their excellent mechanical properties. The electronic properties of MEAs, however, are less well investigated. In this thesis, various properties such as electronic, spin, and thermal properties of two three-dimensional (3D) and two two-dimensional (2D) compositionally complex semiconductors are demonstrated to have promising various applications in photovoltaic, thermoelectric, and spin quantum bits (qubits).3D semiconducting Si-Ge-Sn and C3BN alloys is firstly introduced. Density functional theory (DFT) calculations and Monte Carlo simulations show that the Si1/3Ge1/3Sn1/3 MEA exhibits a large local distortion effect yet no chemical short-range order. Single vacancies in this MEA can be stabilized by bond reformations while the alloy retains semiconducting. DFT and molecular dynamics calculations predict that increasing the compositional disorder in SiyGeySnx MEAs enhances their electrical conductivity while weakens the thermal conductivity at room temperature, making the SiyGeySnx MEAs promising functional materials for thermoelectric devices. Furthermore, the nitrogen-vacancy (NV) center analog in C3BN (NV-C3BN) is studied to explore its applications in quantum computers. This analog possesses similar properties to the NV center in diamond such as a highly localized spin density and strong hyperfine interactions, making C3BN suitable for hosting spin qubits. The analog also displays two zero-phonon-line energies corresponding to wavelengths close to the ideal telecommunication band width, useful for quantum communications.
2D semiconducting transition metal chalcogenides (TMCs) and PtPN are also investigated. The quaternary compositionally complex TMCs show tunable properties such as in-plane lattice constants, band gaps, and band alignment, using a high through-put workflow from DFT calculations in conjunction with the virtual crystal approximation. A novel 2D semiconductor PtPN of direct bandgap is also predicted, based on pentagonal tessellation.
The work in the thesis offers guidance to the experimental realization of these novel semiconductors, which serve as valuable prototypes of other compositionally complex systems from other elements.
ContributorsWang, Duo (Author) / Zhuang, Houlong (Thesis advisor) / Singh, Arunima (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2020