This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168364-Thumbnail Image.png
Description
Laser powder bed fusion (LPBF) additive manufacturing (AM) has received widespread attention due to its ability to produce parts with complicated design and better surface finish compared to other additive techniques. LPBF uses a laser heat source to melt layers of powder particles and manufactures a part based on the

Laser powder bed fusion (LPBF) additive manufacturing (AM) has received widespread attention due to its ability to produce parts with complicated design and better surface finish compared to other additive techniques. LPBF uses a laser heat source to melt layers of powder particles and manufactures a part based on the CAD design. This process can benefit significantly through computational modeling. The objective of this thesis was to understand the thermal transport, and fluid flow phenomena of the process, and to optimize the main process parameters such as laser power and scan speed through a combination of computational, experimental, and statistical analysis. A multi-physics model was built using to model temperature profile, bead geometry and elemental evaporation in powder bed process using a non-gaussian interaction between laser heat source and metallic powder. Owing to the scarcity of thermo-physical properties of metallic powders in literature, thermal conductivity, diffusivity, and heat capacity was experimentally tested up to a temperature of 1400 degrees C. The values were used in the computational model, which improved the results significantly. The computational work was also used to assess the impact of fluid flow around melt pool. Dimensional analysis was conducted to determine heat transport mode at various laser power/scan speed combinations. Convective heat flow proved to be the dominant form of heat transfer at higher energy input due to violent flow of the fluid around the molten region, which can also create keyhole effect. The last part of the thesis focused on gaining useful information about several features of the bead area such as contact angle, porosity, voids and melt pool that were obtained using several combinations of laser power and scan speed. These features were quantified using process learning, which was then used to conduct a full factorial design that allows to estimate the effect of the process parameters on the output features. Both single and multi-response analysis are applied to analyze the output response. It was observed that laser power has more influential effect on all the features. Multi response analysis showed 150 W laser power and 200 mm/s produced bead with best possible features.
ContributorsAhsan, Faiyaz (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Kwon, Beomjin (Committee member) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021
187801-Thumbnail Image.png
Description
With increasing advance complexity in the structure to be 3D printed, the use of post processing removal of support structures has become more complicated thing due to the need of newer tool case to remove supports in such scenarios. Attempts have been made to study, research and experiment the dissolvable

With increasing advance complexity in the structure to be 3D printed, the use of post processing removal of support structures has become more complicated thing due to the need of newer tool case to remove supports in such scenarios. Attempts have been made to study, research and experiment the dissolvable and recyclable photo-initiated polymeric resin that can be used to build support structure. Vat photo-polymerization method of manufacturing was selected due to wide range of materials that can be selected and researched which can have the potential to be selected further for large scale manufacturing. Deep understanding of the recyclable polymer was done by performing chemical and mechanical property test. Varying light intensities are used to study the curing properties and respective dissolving properties. In this thesis document, recyclable and dissolvable polymeric resin have been selected to print the support structures which can be later dissolved and recycled.The resin was exposed to varying light projections using grayscales of 255, 200 and 150 showing different dissolving time of each structure. Dissolving time of the printed parts were studied by varying the surface to volume ratios of the part. Higher the surface to volume ratios of the printed part resulted in lower time it takes to dissolve the part in the dissolving solution. The mechanical strengths of the recycled part were found to be pretty solid as compared to the freshly prepared resin, good sign of using it for multiple times without degrading its strength. Cactus shaped model was printed using commercial red resin and supports with the recyclable solution to deeply understand the working and dissolving properties of recyclable resin. Without any external efforts, the supports were easily dissolved in the solution, leaving the cactus intact. Further work is carried on printing Meta shaped gyroid lattice structure in effort to lower the dissolving time of the supports while maintaining enough mechanical stress. Future efforts will be made to conduct the rheology test and further lower the dissolving time as much it can to be ready for the commercial large scale applications.
ContributorsNawab, Prem Kalpesh (Author) / Li, Xiangjia (Thesis advisor) / Zhuang, Houlong (Committee member) / Jin, Kailong (Committee member) / Arizona State University (Publisher)
Created2023