This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156241-Thumbnail Image.png
Description
In this study, two novel sorbents (zeolite 4A and sodium polyacrylate) are tested to investigate if utilizing ultrasonic acoustic energy could decrease the amount of time and overall energy required to regenerate these materials for use in cooling applications. To do this, an experiment was designed employing a cartridge heater

In this study, two novel sorbents (zeolite 4A and sodium polyacrylate) are tested to investigate if utilizing ultrasonic acoustic energy could decrease the amount of time and overall energy required to regenerate these materials for use in cooling applications. To do this, an experiment was designed employing a cartridge heater and a piezoelectric element to be simultaneously providing heat and acoustic power to a custom designed desorption bed while measuring the bed mass and sorbent temperature at various locations. The results prove to be promising showing that early in the desorption process ultrasound may expedite the desorption process in zeolite by as much as five times and in sodium polyacrylate as much as three times in comparison to providing heat alone. The results also show that in zeolite desorption utilizing ultrasound may be particularly beneficial to initiate desorption whereas in sodium polyacrylate ultrasound appears most promising in the after a temperature threshold is met. These are exciting results and may prove to be significant in the future as more novel heat-based cooling cycles are developed.
ContributorsBertrand, Weston Kyle (Author) / Phelan, Patrick (Thesis advisor) / Bocanegra, Luis (Committee member) / Wang, Liping (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2018
132814-Thumbnail Image.png
Description
Current applications of the traditional vapor-compression refrigeration system are not feasible. Space cooling and refrigeration systems that employ vapor-compression refrigeration cycles utilize harmful refrigerants, produce large amounts of carbon dioxide, and have high energy consumption. Adsorption cooling technology is seen as a possible alternative to traditional vapor-compression refrigeration systems. The

Current applications of the traditional vapor-compression refrigeration system are not feasible. Space cooling and refrigeration systems that employ vapor-compression refrigeration cycles utilize harmful refrigerants, produce large amounts of carbon dioxide, and have high energy consumption. Adsorption cooling technology is seen as a possible alternative to traditional vapor-compression refrigeration systems. The low-grade heat requirement and eco-friendly adsorbent and refrigerant materials make adsorption cooling an attractive technology. Adsorption cooling technology employs the adsorption principle—the phenomenon in which an adsorbate fluid adheres to the surfaces and micropores of an adsorbent solid. The purpose of this study was to explore the adsorption cooling process through the use of a prototype adsorption test bed design. A basic intermittent adsorption cooling cycle was utilized for the test bed design. Several requirements for the design include low-cost, simple fabrication, and capable of holding a vacuum. In this study, an experiment was carried out to analyze the desorption process, in which the original weight of adsorbed water was compared to the weight of the desorbed water. The system pressure was decreased to sub-atmospheric absolute pressure of 16.67 kPa in order to increase the desorption rate and drive the desorption process. A hot water pump provided 81.6 °C hot water to heat the adsorption bed. The desorption process lasted for a duration of 162 minutes. The experiment resulted in 3.60 g (16.04%) of the initial adsorbed water being desorbed during the desorption process. The study demonstrates the potential of adsorption cooling. This paper outlines the design, fabrication, and analysis of a prototype adsorption cooling test bed.
Created2019-05