This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

133052-Thumbnail Image.png
Description
The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a

The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a Blank IUD (without Levo), or a Levo-releasing IUD (Levo IUD), enabling us to evaluate the effects of Ovx and the effects of IUD administration on cognition. Two weeks after surgery, all treatment groups were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. At sacrifice, upon investigation of the uteri, it was determined that some of the IUDs were no longer present in animals from these groups: Sham\u2014Blank IUD, Ovx\u2014Blank IUD, and Sham\u2014Levo IUD. Results from the remaining three groups showed that compared to Sham animals with no IUDs, Ovx animals with no IUDs had marginally impaired working memory performance, and that Ovx animals with Levo IUDs as compared to Ovx animals with no IUDs had marginally enhanced memory performance, not specific to a particular memory type. Results also showed that Ovx animals with Levo IUDs had qualitatively more cells in their vaginal smears and increased uterine horn weight compared to Ovx animals with no IUDs, suggesting local stimulation of the Levo IUDs to the uterine horns. Overall, these results provide alternative evidence to the hypothesis that the Levo IUD administers Levo in solely a localized manner, and suggests that the possibility for the Levo IUD to affect reproductive cyclicity in ovary-intact animals is not rejected. The potential for the Levo IUD to exert effects on cognition suggests that either the hormone does in fact systemically circulate, or that the Levo IUD administration affects cognition by altering an as yet undetermined hormonal or other feedback between the uterus and the brain.
ContributorsStrouse, Isabel Martha (Author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Sirianni, Rachael (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133796-Thumbnail Image.png
Description
Hormone therapy (HT) containing 17beta-estradiol (E2) can greatly reduce physiological symptoms associated with declines in ovarian hormones that are seen with menopause. HT containing E2 has also been shown to play a beneficial role in cognitive function. There is discrepancy, however, surrounding which dose of E2 is the most optimal

Hormone therapy (HT) containing 17beta-estradiol (E2) can greatly reduce physiological symptoms associated with declines in ovarian hormones that are seen with menopause. HT containing E2 has also been shown to play a beneficial role in cognitive function. There is discrepancy, however, surrounding which dose of E2 is the most optimal for cognition. A previous rodent behavioral study in our laboratory evaluated the effects of different doses of E2 on spatial memory performance, and results indicated that rats treated with a low E2 dose (0.3 g E2) made fewer working memory incorrect (WMI) errors, indicating enhanced spatial memory performance, compared to vehicle (0.1ml sesame oil)- and high E2 (3.0 g E2)- treated groups. This finding warranted the present investigation with the overarching aim to evaluate underlying neuromolecular mechanisms that may be modulating these cognitive effects. Both the insulin-like growth factor-1 receptor (IGF1-R) and extracellular regulated kinase (Erk) 2 have been observed to mediate E2-induced memory enhancements. We used the Western Blot to measure IGF1-R and activated Erk1/2 expression in brain regions involved in learning and memory, including the dorsal hippocampus, ventral CA1/CA2 hippocampus, entorhinal cortex, and perirhinal cortex. Results demonstrated a linear relationship between IGF1-R expression and administered E2 dose in the perirhinal cortex, whereby IGF1-R expression increased as the dose of E2 increased. Additionally, in the perirhinal cortex, IGF1-R expression tended to increase as activated Erk1 increased for all treatment groups. Further, number of WMI errors tended to decrease as IGF1-R expression and activated Erk1 expression in the perirhinal cortex tended to increase in the low E2 treatment group. Collectively, these findings suggest a downstream-dependent relationship between IGF1-R and activated Erk1 in the perirhinal cortex that may be contributing to the enhancements in spatial memory performance observed in animals in the low E2 treatment group. These findings are a crucial piece in the greater understanding of what underlying molecular mechanisms may be modulating a cognitively beneficial dose of E2, and further contribute to the search for a HT that would be beneficial for cognition in menopausal women.
ContributorsNeeley, Rachel Elizabeth (Author) / Bimonte-Nelson, Heather (Thesis director) / George, Andrew (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135025-Thumbnail Image.png
Description
Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when

Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when taken in combination, are beneficial or harmful to cognition. This is a critically important question given that these hormones are most often given in combination versus separately. This thesis is composed of two studies examining the cognitive effects of E2 and Levo using a rat model of surgical menopause. Study 1 assessed how the dose of E2 treatment in rats impacted cognitive performance, and found that low dose E2 enhanced working memory performance. Next, based on the results from Study 1, Study 2 used low dose E2 in combination with different doses of Levo to examine the cognitive effects of several E2 to Levo ratio combinations. The results from Study 2 demonstrated that the combination of low dose E2 with a high dose of Levo at a 1:2 ratio impaired cognition, and that the ratio currently used in HT, 3:1, may also negatively impact cognition. Indeed, there was a dose response effect indicating that working and reference memory performance was incrementally impaired as Levo dose increased. The findings in this thesis suggest that the E2 plus Levo combination is likely not neutral for cognitive function, and prompts further evaluation in menopausal women, as well as drug discovery research to optimize HT using highly controlled preclinical models.
ContributorsBerns-Leone, Claire Elizabeth (Co-author) / Prakapenka, Alesia (Co-author) / Pena, Veronica (Co-author) / Northup-Smith, Steven (Co-author) / Melikian, Ryan (Co-author) / Ladwig, Ducileia (Co-author) / Patel, Shruti (Co-author) / Croft, Corissa (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12