This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187454-Thumbnail Image.png
Description
This dissertation presents novel solutions for improving the generalization capabilities of deep learning based computer vision models. Neural networks are known to suffer a large drop in performance when tested on samples from a different distribution than the one on which they were trained. The proposed solutions, based on latent

This dissertation presents novel solutions for improving the generalization capabilities of deep learning based computer vision models. Neural networks are known to suffer a large drop in performance when tested on samples from a different distribution than the one on which they were trained. The proposed solutions, based on latent space geometry and meta-learning, address this issue by improving the robustness of these models to distribution shifts. Through the use of geometrical alignment, state-of-the-art domain adaptation and source-free test-time adaptation strategies are developed. Additionally, geometrical alignment can allow classifiers to be progressively adapted to new, unseen test domains without requiring retraining of the feature extractors. The dissertation also presents algorithms for enabling in-the-wild generalization without needing access to any samples from the target domain. Other causes of poor generalization, such as data scarcity in critical applications and training data with high levels of noise and variance, are also explored. To address data scarcity in fine-grained computer vision tasks such as object detection, novel context-aware augmentations are suggested. While the first four chapters focus on general-purpose computer vision models, strategies are also developed to improve robustness in specific applications. The efficiency of training autonomous agents for visual navigation is improved by incorporating semantic knowledge, and the integration of domain experts' knowledge allows for the realization of a low-cost, minimally invasive generalizable automated rehabilitation system. Lastly, new tools for explainability and model introspection using counter-factual explainers trained through interval-based uncertainty calibration objectives are presented.
ContributorsThopalli, Kowshik (Author) / Turaga, Pavan (Thesis advisor) / Thiagarajan, Jayaraman J (Committee member) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023
161967-Thumbnail Image.png
Description
Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to

Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to force models to avoid being exposed to biases. However, the filtering leads to a considerable wastage of resources as most of the dataset created is discarded as biased. This work deals with avoiding the wastage of resources by identifying and quantifying the biases. I further elaborate on the implications of dataset filtering on robustness (to adversarial attacks) and generalization (to out-of-distribution samples). The findings suggest that while dataset filtering does help to improve OOD(Out-Of-Distribution) generalization, it has a significant negative impact on robustness to adversarial attacks. It also shows that transforming bias-inducing samples into adversarial samples (instead of eliminating them from the dataset) can significantly boost robustness without sacrificing generalization.
ContributorsSachdeva, Bhavdeep Singh (Author) / Baral, Chitta (Thesis advisor) / Liu, Huan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021