This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

134823-Thumbnail Image.png
Description
Imaging using electric fields could provide a cheaper, safer, and easier alternative to the standard methods used for imaging. The viability of electric field imaging at very low frequencies using D-dot sensors has already been investigated and proven. The new goal is to determine if imaging is viable at high

Imaging using electric fields could provide a cheaper, safer, and easier alternative to the standard methods used for imaging. The viability of electric field imaging at very low frequencies using D-dot sensors has already been investigated and proven. The new goal is to determine if imaging is viable at high frequencies. In order to accomplish this, the operational amplifiers used in the very low frequency imaging test set up must be replaced with ones that have higher bandwidth. The trade-off of using these amplifiers is that they have a typical higher input leakage current on the order of 100 compared to the standard. Using a modified circuit design technique that reduces input leakage current of the operational amplifiers used in the imaging test setup, a printed circuit board with D-dot sensors is fabricated to identify the frequency limitations of electric field imaging. Data is collected at both low and high frequencies as well as low peak voltage. The data is then analyzed to determine the range in intensity of electric field and frequency that this circuit low-leakage design can accurately detect a signal. Data is also collected using another printed circuit board that uses the standard circuit design technique. The data taken from the different boards is compared to identify if the modified circuit design technique allows for higher sensitivity imaging. In conclusion, this research supports that using low-leakage design techniques can allow for signal detection comparable to that of the standard circuit design. The low-leakage design allowed for sensitivity within a factor two to that of the standard design. Although testing at higher frequencies was limited, signal detection for the low-leakage design was reliable up until 97 kHz, but further experimentation is needed to determine the upper frequency limits.
ContributorsLin, Richard (Co-author) / Angell, Tyler (Co-author) / Allee, David (Thesis director) / Chung, Hugh (Committee member) / Electrical Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132174-Thumbnail Image.png
Description
The NASA Psyche Iron Meteorite Imaging System (IMIS) is a standalone system created to image metal meteorites from ASU’s Center for Meteorite Studies’ collection that have an etched surface. Meteorite scientists have difficulty obtaining true-to-life images of meteorites through traditional photography methods due to the meteorites’ shiny, irregular surfaces, which

The NASA Psyche Iron Meteorite Imaging System (IMIS) is a standalone system created to image metal meteorites from ASU’s Center for Meteorite Studies’ collection that have an etched surface. Meteorite scientists have difficulty obtaining true-to-life images of meteorites through traditional photography methods due to the meteorites’ shiny, irregular surfaces, which interferes with their ability to identify meteorites’ component materials through image analysis. Using the IMIS, scientists can easily and consistently obtain glare-free photographs of meteorite surface that are suitable for future use in an artificial intelligence-based meteorite component analysis system. The IMIS integrates a lighting system, a mounted camera, a sample positioning area, a meteorite leveling/positioning system, and a touch screen control panel featuring an interface that allows the user to see a preview of the image to be taken as well as an edge detection view, a glare detection view, a button that allows the user to remotely take the picture, and feedback if very high levels of glare are detected that may indicate a camera or positioning error. Initial research and design work were completed by the end of Fall semester, and Spring semester consisted of building and testing the system. The current system is fully functional, and photos taken by the current system have been approved by a meteorite expert and an AI expert. The funding for this project was tentatively capped at $1000 for miscellaneous expenses, not including a camera to be supplied by the School of Earth and Space Exploration. When SESE was unable to provide a camera, an additional $4000 were allotted for camera expenses. So far, $1935 of the total $5000 budget has been spent on the project, putting the project $3065 under budget. While this system is a functional prototype, future capstone projects may involve the help of industrial designers to improve the technician’s experience through automating the sample positioning process.
ContributorsBaerwaldt, Morgan Kathleen (Author) / Bowman, Cassie (Thesis director) / Kozicki, Michael (Committee member) / School of Art (Contributor) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05