This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

134928-Thumbnail Image.png
Description
Finding life beyond Earth could change our understanding of life and habitability. The best place to look for life beyond Earth is Jupiter's moon, Europa. It has been estimated Europa may have a liquid, salt-water subsurface with 2 to 3 times the volume of all Earth's oceans. Knowing that all

Finding life beyond Earth could change our understanding of life and habitability. The best place to look for life beyond Earth is Jupiter's moon, Europa. It has been estimated Europa may have a liquid, salt-water subsurface with 2 to 3 times the volume of all Earth's oceans. Knowing that all life requires water, it is in our best interest to explore Europa. This thesis explored the plausibility of life on Europa in four of its environments: on the surface, under the ice shell, in the liquid subsurface, and at the bottom of the liquid subsurface. Each of these environments were defined from science literature and compared to known Earth analogs. Europa's surface is not likely to support life, as there is not liquid water present. There is also extremely high radiation bombardment and extremely low surface temperatures that are estimated to be well out of the range for supporting life. It is more plausible that life could be under Europa's ice shell than on the surface. Under the surface, radiation exposure dramatically reduces. Researchers have found organisms on Earth that can live in similar environments as Europa's ice as well. These organisms require some interaction with liquid water though. Uncertainties about Europa's ice shell thickness and radiation load per depth it experiences, as well as there being limited research on organisms in ice environments, hinder us from definitively assessing the plausibility of life under the surface. The best environment on Europa to look for life on Europa is the subsurface. There remain a lot of uncertainties about the subsurface, however, that make it difficult to assess the plausibility of finding life. These uncertainties include its depth, water activity, salinity, temperature, pressure, and structure. This subsurface may be suitable for life, but until we can further understand the environment of the subsurface, we cannot make definite conclusions. As for assessing the plausibility of life at the bottom of Europa's subsurface, there is not much we know about this environment either. It has been suggested there may be hydrothermal vents, but no evidence has either supported or rejected this idea. Without a clear understanding of the environment at the bottom of the subsurface, the plausibility of life here cannot be definitively answered. It is apparent we need to further study Europa. In particular, we need to focus on understanding the subsurface. When the subsurface is better defined, we can better assess the plausibility of life being present. Fortunately, both NASA and the ESA are currently planning missions to Europa that are scheduled to launch in the 2020s.
ContributorsHoward, Cheyenne Whiffen (Author) / Farmer, Jack (Thesis director) / Shock, Everett (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
For this study, my overarching goal was to understand the possibilities of humanity’s future in space exploration. Addressing the future of space exploration not only opens doors for a multitude of discoveries but may answer questions that can be essential to our survival on Earth. This study, more specifically, aimed

For this study, my overarching goal was to understand the possibilities of humanity’s future in space exploration. Addressing the future of space exploration not only opens doors for a multitude of discoveries but may answer questions that can be essential to our survival on Earth. This study, more specifically, aimed to determine how college students at Arizona State University, engineering and astronomy students in particular, visualize the future of space exploration, as in the future, they will become the leading experts at the forefront of all space-related developments. The method through which I have conducted this study is a short survey, consisting of a variety of questions, designed to encourage students to develop their own unique interpretations of space exploration and ultimately, its imminent future. The results ultimately demonstrated that most participants in the study believed that political obstacles were the most prevalent concern in the further development of space exploration. There also appeared to be a moderate outlook on the future success and vitality of space exploration among student scientists and engineers. From a statistical standpoint, there appeared to be no alarming difference of opinion between these two ASU student groups.
ContributorsMontano, Sebastian (Author) / Voorhees, Matthew (Thesis director) / Aganaba, Timiebi (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-12