This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 5 of 5
Filtering by

Clear all filters

156788-Thumbnail Image.png
Description
Multiaxial mechanical fatigue of heterogeneous materials has been a significant cause of concern in the aerospace, civil and automobile industries for decades, limiting the service life of structural components while increasing time and costs associated with inspection and maintenance. Fiber reinforced composites and light-weight aluminum alloys are widely used in

Multiaxial mechanical fatigue of heterogeneous materials has been a significant cause of concern in the aerospace, civil and automobile industries for decades, limiting the service life of structural components while increasing time and costs associated with inspection and maintenance. Fiber reinforced composites and light-weight aluminum alloys are widely used in aerospace structures that require high specific strength and fatigue resistance. However, studying the fundamental crack growth behavior at the micro- and macroscale as a function of loading history is essential to accurately predict the residual fatigue life of components and achieve damage tolerant designs. The issue of mechanical fatigue can be tackled by developing reliable in-situ damage quantification methodologies and by comprehensively understanding fatigue damage mechanisms under a variety of complex loading conditions. Although a multitude of uniaxial fatigue loading studies have been conducted on light-weight metallic materials and composites, many service failures occur from components being subjected to variable amplitude, mixed-mode multiaxial fatigue loadings. In this research, a systematic approach is undertaken to address the issue of fatigue damage evolution in aerospace materials by:

(i) Comprehensive investigation of micro- and macroscale crack growth behavior in aerospace grade Al 7075 T651 alloy under complex biaxial fatigue loading conditions. The effects of variable amplitude biaxial loading on crack growth characteristics such as crack acceleration and retardation were studied in detail by exclusively analyzing the influence of individual mode-I, mixed-mode and mode-II overload and underload fatigue cycles in an otherwise constant amplitude mode-I baseline load spectrum. The micromechanisms governing crack growth behavior under the complex biaxial loading conditions were identified and correlated with the crack growth behavior and fracture surface morphology through quantitative fractography.

(ii) Development of novel multifunctional nanocomposite materials with improved fatigue resistance and in-situ fatigue damage detection and quantification capabilities. A state-of-the-art processing method was developed for producing sizable carbon nanotube (CNT) membranes for multifunctional composites. The CNT membranes were embedded in glass fiber laminates and in-situ strain sensing and damage quantification was achieved by exploiting the piezoresistive property of the CNT membrane. In addition, improved resistance to fatigue crack growth was observed due to the embedded CNT membrane.
ContributorsDatta, Siddhant (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Marvi, Hamidreza (Committee member) / Tang, Pingbo (Committee member) / Yekani Fard, Masoud (Committee member) / Iyyer, Nagaraja (Committee member) / Arizona State University (Publisher)
Created2018
154829-Thumbnail Image.png
Description
There is a concerted effort in developing robust systems health monitoring/management (SHM) technology as a means to reduce the life cycle costs, improve availability, extend life and minimize downtime of various platforms including aerospace and civil infrastructure. The implementation of a robust SHM system requires a collaborative effort in a

There is a concerted effort in developing robust systems health monitoring/management (SHM) technology as a means to reduce the life cycle costs, improve availability, extend life and minimize downtime of various platforms including aerospace and civil infrastructure. The implementation of a robust SHM system requires a collaborative effort in a variety of areas such as sensor development, damage detection and localization, physics based models, and prognosis models for residual useful life (RUL) estimation. Damage localization and prediction is further complicated by geometric, material, loading, and environmental variabilities. Therefore, it is essential to develop robust SHM methodologies by taking into account such uncertainties. In this research, damage localization and RUL estimation of two different physical systems are addressed: (i) fatigue crack propagation in metallic materials under complex multiaxial loading and (ii) temporal scour prediction near bridge piers. With little modifications, the methodologies developed can be applied to other systems.

Current practice in fatigue life prediction is based on either physics based modeling or data-driven methods, and is limited to predicting RUL for simple geometries under uniaxial loading conditions. In this research, crack initiation and propagation behavior under uniaxial and complex biaxial fatigue loading is addressed. The crack propagation behavior is studied by performing extensive material characterization and fatigue testing under in-plane biaxial loading, both in-phase and out-of-phase, with different biaxiality ratios. A hybrid prognosis model, which combines machine learning with physics based modeling, is developed to account for the uncertainties in crack propagation and fatigue life prediction due to variabilities in material microstructural characteristics, crack localization information and environmental changes. The methodology iteratively combines localization information with hybrid prognosis models using sequential Bayesian techniques. The results show significant improvements in the localization and prediction accuracy under varying temperature.

For civil infrastructure, especially bridges, pier scour is a major failure mechanism. Currently available techniques are developed from a design perspective and provide highly conservative scour estimates. In this research, a fully probabilistic scour prediction methodology is developed using machine learning to accurately predict scour in real-time under varying flow conditions.
ContributorsNeerukatti, Rajesh Kumar (Author) / Chattopadhyay, Aditi (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2016
154754-Thumbnail Image.png
Description
The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint

The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint (“Brake-Reuss” beam). The observed impact responses at different levels clearly demonstrate the occurrence of both micro- and macro-slip, which are reflected by increased damping and a lowering of natural frequencies. Significant beam-to-beam variability of impact responses is also observed.

Based on these experimental results, a deterministic 4-parameter Iwan model of the joint was developed. These parameters were randomized following a previous investigation. The randomness in the impact response predicted from this uncertain model was assessed in a Monte Carlo format through a series of time integrations of the response and found to be consistent with the experimental results.

The availability of an uncertain computational model for the Brake-Reuss beam provides a starting point to analyze and model the response of multi-joint structures in the presence of uncertainty/variability. To this end, a 4-beam frame was designed that is composed of three identical Brake-Reuss beams and a fourth, stretched one. The response of that structure to impact was computed and several cases were identified.

The presence of uncertainty implies that an exact prediction of the response of a particular frame cannot be achieved. Rather, the response can only be predicted to lie within a band reflecting the level of uncertainty. In this perspective, the computational model adopted for the frame is only required to provide a good estimate of this uncertainty band. Equivalently, a relaxation of the model complexity, i.e., the introduction of epistemic uncertainty, can be performed as long as it does not affect significantly the uncertainty band of the predictions. Such an approach, which holds significant promise for the efficient computational of the response of structures with many uncertain joints, is assessed here by replacing some joints by linear spring elements. It is found that this simplification of the model is often acceptable at lower excitation/response levels.
ContributorsRobertson, Brett Anthony (Author) / Mignolet, Marc P (Thesis advisor) / Brake, Matt (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
155736-Thumbnail Image.png
Description
This investigation is focused on the consideration of structural uncertainties in nearly-straight pipes conveying fluid and on the effects of these uncertainties on the dynamic response and stability of those pipes. Of interest more specifically are the structural uncertainties which affect directly the fluid flow and its feedback on the

This investigation is focused on the consideration of structural uncertainties in nearly-straight pipes conveying fluid and on the effects of these uncertainties on the dynamic response and stability of those pipes. Of interest more specifically are the structural uncertainties which affect directly the fluid flow and its feedback on the structural response, e.g., uncertainties on/variations of the inner cross-section and curvature of the pipe. Owing to the complexity of introducing such uncertainties directly in finite element models, it is desired to proceed directly at the level of modal models by randomizing simultaneously the appropriate mass, stiffness, and damping matrices. The maximum entropy framework is adopted to carry out the stochastic modeling of these matrices with appropriate symmetry constraints guaranteeing that the nature, e.g., divergence or flutter, of the bifurcation is preserved when introducing uncertainty.

To support the formulation of this stochastic ROM, a series of finite element computations are first carried out for pipes with straight centerline but inner radius varying randomly along the pipe. The results of this numerical discovery effort demonstrate that the dominant effects originate from the variations of the exit flow speed, induced by the change in inner cross-section at the pipe end, with the uncertainty on the cross-section at other locations playing a secondary role. Relying on these observations, the stochastic reduced order model is constructed to model separately the uncertainty in inner cross-section at the pipe end and at other locations. Then, the fluid related mass, damping, and stiffness matrices of this stochastic reduced order model (ROM) are all determined from a single random matrix and a random variable. The predictions from this stochastic ROM are found to closely match the corresponding results obtained with the randomized finite element model. It is finally demonstrated that this stochastic ROM can easily be extended to account for the small effects due to uncertainty in pipe curvature.
ContributorsShah, Shrinil (Author) / Mignolet, Marc P (Thesis advisor) / Liu, Yongming (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2017
155589-Thumbnail Image.png
Description
The focus of this investigation is on the development of a surrogate model of hypersonic aerodynamic forces on structures to reduce the computational effort involved in the determination of the structural response. The application is more precisely focused on uncertain structures. Then, following an uncertainty management strategy, the surrogate may

The focus of this investigation is on the development of a surrogate model of hypersonic aerodynamic forces on structures to reduce the computational effort involved in the determination of the structural response. The application is more precisely focused on uncertain structures. Then, following an uncertainty management strategy, the surrogate may exhibit an error with respect to Computational Fluid Dynamics (CFD) reference data as long as that error does not significantly affect the uncertainty band of the structural response. Moreover, this error will be treated as an epistemic uncertainty introduced in the model thereby generating an uncertain surrogate. Given this second step, the aerodynamic surrogate is limited to those exhibiting simple analytic forms with parameters that can be identified from CFD data.

The first phase of the investigation focuses on the selection of an appropriate form for the surrogate for the 1-dimensional flow over a flat clamped-clamped. Following piston theory, the model search started with purely local models, linear and nonlinear of the local slope. A second set of models was considered that involve also the local displacement, curvature, and integral of displacement and an improvement was observed that can be attributed to a global effect of the pressure distribution. Various ways to involve such a global effect were next investigated eventually leading to a two-level composite model based on the sum of a local component represented as a cubic polynomial of the downwash and a global component represented by an auto-regressive moving average (ARMA) model driven nonlinearly by the local downwash. This composite model is applicable to both steady pressure distributions with the downwash equal to the slope and to unsteady cases with the downwash as partial derivative with time in addition to steady.

The second part of the investigation focused on the introduction of the epistemic uncertainty in the aerodynamic surrogate and it was recognized that it could be achieved by randomizing the coefficients of the local and/or the auto-regressive components of the model. In fact, the combination of the two effects provided an applicable strategy.
ContributorsSharma, Pulkit (Author) / Mignolet, Marc Paul (Thesis advisor) / Liu, Yongming (Committee member) / McNamara, Jack (Committee member) / Arizona State University (Publisher)
Created2017