This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

153479-Thumbnail Image.png
Description
Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or

Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or empirical verification and background data exist and are often well defined, these features are commonly lacking in social and other networks. Here, a novel algorithmic framework for statistical signal processing for graphs is presented. The framework is based on the analysis of spectral properties of the residuals matrix. The framework is applied to the detection of innovation patterns in publication networks, leveraging well-studied empirical knowledge from the history of science. Both the framework itself and the application constitute novel contributions, while advancing algorithmic and mathematical techniques for graph-based data and understanding of the patterns of emergence of novel scientific research. Results indicate the efficacy of the approach and highlight a number of fruitful future directions.
ContributorsBliss, Nadya Travinin (Author) / Laubichler, Manfred (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2015
157982-Thumbnail Image.png
Description
Ultrasound B-mode imaging is an increasingly significant medical imaging modality for clinical applications. Compared to other imaging modalities like computed tomography (CT) or magnetic resonance imaging (MRI), ultrasound imaging has the advantage of being safe, inexpensive, and portable. While two dimensional (2-D) ultrasound imaging is very popular, three dimensional (3-D)

Ultrasound B-mode imaging is an increasingly significant medical imaging modality for clinical applications. Compared to other imaging modalities like computed tomography (CT) or magnetic resonance imaging (MRI), ultrasound imaging has the advantage of being safe, inexpensive, and portable. While two dimensional (2-D) ultrasound imaging is very popular, three dimensional (3-D) ultrasound imaging provides distinct advantages over its 2-D counterpart by providing volumetric imaging, which leads to more accurate analysis of tumor and cysts. However, the amount of received data at the front-end of 3-D system is extremely large, making it impractical for power-constrained portable systems.



In this thesis, algorithm and hardware design techniques to support a hand-held 3-D ultrasound imaging system are proposed. Synthetic aperture sequential beamforming (SASB) is chosen since its computations can be split into two stages, where the output generated of Stage 1 is significantly smaller in size compared to the input. This characteristic enables Stage 1 to be done in the front end while Stage 2 can be sent out to be processed elsewhere.



The contributions of this thesis are as follows. First, 2-D SASB is extended to 3-D. Techniques to increase the volume rate of 3-D SASB through a new multi-line firing scheme and use of linear chirp as the excitation waveform, are presented. A new sparse array design that not only reduces the number of active transducers but also avoids the imaging degradation caused by grating lobes, is proposed. A combination of these techniques increases the volume rate of 3-D SASB by 4\texttimes{} without introducing extra computations at the front end.



Next, algorithmic techniques to further reduce the Stage 1 computations in the front end are presented. These include reducing the number of distinct apodization coefficients and operating with narrow-bit-width fixed-point data. A 3-D die stacked architecture is designed for the front end. This highly parallel architecture enables the signals received by 961 active transducers to be digitalized, routed by a network-on-chip, and processed in parallel. The processed data are accumulated through a bus-based structure. This architecture is synthesized using TSMC 28 nm technology node and the estimated power consumption of the front end is less than 2 W.



Finally, the Stage 2 computations are mapped onto a reconfigurable multi-core architecture, TRANSFORMER, which supports different types of on-chip memory banks and run-time reconfigurable connections between general processing elements and memory banks. The matched filtering step and the beamforming step in Stage 2 are mapped onto TRANSFORMER with different memory configurations. Gem5 simulations show that the private cache mode generates shorter execution time and higher computation efficiency compared to other cache modes. The overall execution time for Stage 2 is 14.73 ms. The average power consumption and the average Giga-operations-per-second/Watt in 14 nm technology node are 0.14 W and 103.84, respectively.
ContributorsZhou, Jian (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Wenisch, Thomas F. (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2019
168844-Thumbnail Image.png
Description
The continuous time-tagging of photon arrival times for high count rate sources isnecessary for applications such as optical communications, quantum key encryption, and astronomical measurements. Detection of Hanbury-Brown and Twiss (HBT) single photon correlations from thermal sources, such as stars, requires a combination of high dynamic range, long integration times, and low systematics

The continuous time-tagging of photon arrival times for high count rate sources isnecessary for applications such as optical communications, quantum key encryption, and astronomical measurements. Detection of Hanbury-Brown and Twiss (HBT) single photon correlations from thermal sources, such as stars, requires a combination of high dynamic range, long integration times, and low systematics in the photon detection and time tagging system. The continuous nature of the measurements and the need for highly accurate timing resolution requires a customized time-to-digital converter (TDC). A custom built, two-channel, field programmable gate array (FPGA)-based TDC capable of continuously time tagging single photons with sub clock cycle timing resolution was characterized. Auto-correlation and cross-correlation measurements were used to constrain spurious systematic effects in the pulse count data as a function of system variables. These variables included, but were not limited to, incident photon count rate, incoming signal attenuation, and measurements of fixed signals. Additionally, a generalized likelihood ratio test using maximum likelihood estimators (MLEs) was derived as a means to detect and estimate correlated photon signal parameters. The derived GLRT was capable of detecting correlated photon signals in a laboratory setting with a high degree of statistical confidence. A proof is presented in which the MLE for the amplitude of the correlated photon signal is shown to be the minimum variance unbiased estimator (MVUE). The fully characterized TDC was used in preliminary measurements of astronomical sources using ground based telescopes. Finally, preliminary theoretical groundwork is established for the deep space optical communications system of the proposed Breakthrough Starshot project, in which low-mass craft will travel to the Alpha Centauri system to collect scientific data from Proxima B. This theoretical groundwork utilizes recent and upcoming space based optical communication systems as starting points for the Starshot communication system.
ContributorsHodges, Todd Michael William (Author) / Mauskopf, Philip (Thesis advisor) / Trichopoulos, George (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2022