This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

154633-Thumbnail Image.png
Description
This thesis aims to explore the language of different bodies in the field of dance by analyzing

the habitual patterns of dancers from different backgrounds and vernaculars. Contextually,

the term habitual patterns is defined as the postures or poses that tend to re-appear,

often unintentionally, as the dancer performs improvisational dance. The focus

This thesis aims to explore the language of different bodies in the field of dance by analyzing

the habitual patterns of dancers from different backgrounds and vernaculars. Contextually,

the term habitual patterns is defined as the postures or poses that tend to re-appear,

often unintentionally, as the dancer performs improvisational dance. The focus lies in exposing

the movement vocabulary of a dancer to reveal his/her unique fingerprint.

The proposed approach for uncovering these movement patterns is to use a clustering

technique; mainly k-means. In addition to a static method of analysis, this paper uses

an online method of clustering using a streaming variant of k-means that integrates into

the flow of components that can be used in a real-time interactive dance performance. The

computational system is trained by the dancer to discover identifying patterns and therefore

it enables a feedback loop resulting in a rich exchange between dancer and machine. This

can help break a dancer’s tendency to create similar postures, explore larger kinespheric

space and invent movement beyond their current capabilities.

This paper describes a project that distinguishes itself in that it uses a custom database

that is curated for the purpose of highlighting the similarities and differences between various

movement forms. It puts particular emphasis on the process of choosing source movement

qualitatively, before the technological capture process begins.
ContributorsIyengar, Varsha (Author) / Xin Wei, Sha (Thesis advisor) / Turaga, Pavan (Committee member) / Coleman, Grisha (Committee member) / Arizona State University (Publisher)
Created2016
189305-Thumbnail Image.png
Description
Quantum computing has the potential to revolutionize the signal-processing field by providing more efficient methods for analyzing signals. This thesis explores the application of quantum computing in signal analysis synthesis for compression applications. More specifically, the study focuses on two key approaches: quantum Fourier transform (QFT) and quantum linear prediction

Quantum computing has the potential to revolutionize the signal-processing field by providing more efficient methods for analyzing signals. This thesis explores the application of quantum computing in signal analysis synthesis for compression applications. More specifically, the study focuses on two key approaches: quantum Fourier transform (QFT) and quantum linear prediction (QLP). The research is motivated by the potential advantages offered by quantum computing in massive signal processing tasks and presents novel quantum circuit designs for QFT, quantum autocorrelation, and QLP, enabling signal analysis synthesis using quantum algorithms. The two approaches are explained as follows. The Quantum Fourier transform (QFT) demonstrates the potential for improved speed in quantum computing compared to classical methods. This thesis focuses on quantum encoding of signals and designing quantum algorithms for signal analysis synthesis, and signal compression using QFTs. Comparative studies are conducted to evaluate quantum computations for Fourier transform applications, considering Signal-to-Noise-Ratio results. The effects of qubit precision and quantum noise are also analyzed. The QFT algorithm is also developed in the J-DSP simulation environment, providing hands-on laboratory experiences for signal-processing students. User-friendly simulation programs on QFT-based signal analysis synthesis using peak picking, and perceptual selection using psychoacoustics in the J-DSP are developed. Further, this research is extended to analyze the autocorrelation of the signal using QFTs and develop a quantum linear prediction (QLP) algorithm for speech processing applications. QFTs and IQFTs are used to compute the quantum autocorrelation of the signal, and the HHL algorithm is modified and used to compute the solutions of the linear equations using quantum computing. The performance of the QLP algorithm is evaluated for system identification, spectral estimation, and speech analysis synthesis, and comparisons are performed for QLP and CLP results. The results demonstrate the following: effective quantum circuits for accurate QFT-based speech analysis synthesis, evaluation of performance with quantum noise, design of accurate quantum autocorrelation, and development of a modified HHL algorithm for efficient QLP. Overall, this thesis contributes to the research on quantum computing for signal processing applications and provides a foundation for further exploration of quantum algorithms for signal analysis synthesis.
ContributorsSharma, Aradhita (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2023
157840-Thumbnail Image.png
Description
Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is

Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is generally not clear how the architectures are to be designed for different applications, or how the neural networks behave under different input perturbations and it is not easy to make the internal representations and parameters more interpretable. In this dissertation, I propose building constraints into feature maps, parameters and and design of algorithms involving neural networks for applications in low-level vision problems such as compressive imaging and multi-spectral image fusion, and high-level inference problems including activity and face recognition. Depending on the application, such constraints can be used to design architectures which are invariant/robust to certain nuisance factors, more efficient and, in some cases, more interpretable. Through extensive experiments on real-world datasets, I demonstrate these advantages of the proposed methods over conventional frameworks.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019