This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

153488-Thumbnail Image.png
Description
Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents

Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents a set of computational methods, that generalize well across different conditions, for speech-based applications involving emotion recognition and keyword detection, and ambient sounds-based applications such as lifelogging.

The expression and perception of emotions varies across speakers and cultures, thus, determining features and classification methods that generalize well to different conditions is strongly desired. A latent topic models-based method is proposed to learn supra-segmental features from low-level acoustic descriptors. The derived features outperform state-of-the-art approaches over multiple databases. Cross-corpus studies are conducted to determine the ability of these features to generalize well across different databases. The proposed method is also applied to derive features from facial expressions; a multi-modal fusion overcomes the deficiencies of a speech only approach and further improves the recognition performance.

Besides affecting the acoustic properties of speech, emotions have a strong influence over speech articulation kinematics. A learning approach, which constrains a classifier trained over acoustic descriptors, to also model articulatory data is proposed here. This method requires articulatory information only during the training stage, thus overcoming the challenges inherent to large-scale data collection, while simultaneously exploiting the correlations between articulation kinematics and acoustic descriptors to improve the accuracy of emotion recognition systems.

Identifying context from ambient sounds in a lifelogging scenario requires feature extraction, segmentation and annotation techniques capable of efficiently handling long duration audio recordings; a complete framework for such applications is presented. The performance is evaluated on real world data and accompanied by a prototypical Android-based user interface.

The proposed methods are also assessed in terms of computation and implementation complexity. Software and field programmable gate array based implementations are considered for emotion recognition, while virtual platforms are used to model the complexities of lifelogging. The derived metrics are used to determine the feasibility of these methods for applications requiring real-time capabilities and low power consumption.
ContributorsShah, Mohit (Author) / Spanias, Andreas (Thesis advisor) / Chakrabarti, Chaitali (Thesis advisor) / Berisha, Visar (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2015
189305-Thumbnail Image.png
Description
Quantum computing has the potential to revolutionize the signal-processing field by providing more efficient methods for analyzing signals. This thesis explores the application of quantum computing in signal analysis synthesis for compression applications. More specifically, the study focuses on two key approaches: quantum Fourier transform (QFT) and quantum linear prediction

Quantum computing has the potential to revolutionize the signal-processing field by providing more efficient methods for analyzing signals. This thesis explores the application of quantum computing in signal analysis synthesis for compression applications. More specifically, the study focuses on two key approaches: quantum Fourier transform (QFT) and quantum linear prediction (QLP). The research is motivated by the potential advantages offered by quantum computing in massive signal processing tasks and presents novel quantum circuit designs for QFT, quantum autocorrelation, and QLP, enabling signal analysis synthesis using quantum algorithms. The two approaches are explained as follows. The Quantum Fourier transform (QFT) demonstrates the potential for improved speed in quantum computing compared to classical methods. This thesis focuses on quantum encoding of signals and designing quantum algorithms for signal analysis synthesis, and signal compression using QFTs. Comparative studies are conducted to evaluate quantum computations for Fourier transform applications, considering Signal-to-Noise-Ratio results. The effects of qubit precision and quantum noise are also analyzed. The QFT algorithm is also developed in the J-DSP simulation environment, providing hands-on laboratory experiences for signal-processing students. User-friendly simulation programs on QFT-based signal analysis synthesis using peak picking, and perceptual selection using psychoacoustics in the J-DSP are developed. Further, this research is extended to analyze the autocorrelation of the signal using QFTs and develop a quantum linear prediction (QLP) algorithm for speech processing applications. QFTs and IQFTs are used to compute the quantum autocorrelation of the signal, and the HHL algorithm is modified and used to compute the solutions of the linear equations using quantum computing. The performance of the QLP algorithm is evaluated for system identification, spectral estimation, and speech analysis synthesis, and comparisons are performed for QLP and CLP results. The results demonstrate the following: effective quantum circuits for accurate QFT-based speech analysis synthesis, evaluation of performance with quantum noise, design of accurate quantum autocorrelation, and development of a modified HHL algorithm for efficient QLP. Overall, this thesis contributes to the research on quantum computing for signal processing applications and provides a foundation for further exploration of quantum algorithms for signal analysis synthesis.
ContributorsSharma, Aradhita (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2023
157840-Thumbnail Image.png
Description
Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is

Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is generally not clear how the architectures are to be designed for different applications, or how the neural networks behave under different input perturbations and it is not easy to make the internal representations and parameters more interpretable. In this dissertation, I propose building constraints into feature maps, parameters and and design of algorithms involving neural networks for applications in low-level vision problems such as compressive imaging and multi-spectral image fusion, and high-level inference problems including activity and face recognition. Depending on the application, such constraints can be used to design architectures which are invariant/robust to certain nuisance factors, more efficient and, in some cases, more interpretable. Through extensive experiments on real-world datasets, I demonstrate these advantages of the proposed methods over conventional frameworks.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019