This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

153249-Thumbnail Image.png
Description
In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the facial features. Next we develop a model to represent the

In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the facial features. Next we develop a model to represent the video sequence in a lower dimensional expression subspace and also as a linear dynamical system using Autoregressive Moving Average (ARMA) model. As these subspaces lie on Grassmann space, we use Grassmann manifold based learning techniques such as kernel Fisher Discriminant Analysis with Grassmann kernels for classification. We consider six expressions namely, Angry (AN), Disgust (Di), Fear (Fe), Happy (Ha), Sadness (Sa) and Surprise (Su) for classification. We perform experiments on extended Cohn-Kanade (CK+) facial expression database to evaluate the expression recognition performance. Our method demonstrates good expression recognition performance outperforming other state of the art FER algorithms. We achieve an average recognition accuracy of 97.41% using a method based on expression subspace, kernel-FDA and Support Vector Machines (SVM) classifier. By using a simpler classifier, 1-Nearest Neighbor (1-NN) along with kernel-FDA, we achieve a recognition accuracy of 97.09%. We find that to process a group of 19 frames in a video sequence, LBP feature extraction requires majority of computation time (97 %) which is about 1.662 seconds on the Intel Core i3, dual core platform. However when only 3 frames (onset, middle and peak) of a video sequence are used, the computational complexity is reduced by about 83.75 % to 260 milliseconds at the expense of drop in the recognition accuracy to 92.88 %.
ContributorsYellamraju, Anirudh (Author) / Chakrabarti, Chaitali (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2014
Description

In this thesis, I explored the interconnected ways in which human experience can shape and be shaped by environments of the future, such as interactive environments and spaces, embedded with sensors, enlivened by advanced algorithms for sensor data processing. I have developed an abstract representational experience into the vast and

In this thesis, I explored the interconnected ways in which human experience can shape and be shaped by environments of the future, such as interactive environments and spaces, embedded with sensors, enlivened by advanced algorithms for sensor data processing. I have developed an abstract representational experience into the vast and continual journey through life that shapes how we can use sensory immersion. The experimental work was housed in the iStage: an advanced black box space in the School of Arts, Media, and Engineering, which consists of video cameras, motion capture systems, spatial audio systems, and controllable lighting and projector systems. The malleable and interactive space of the iStage transformed into a reflective tool in which to gain insight into the overall shared, but very individual, emotional odyssey. Additionally, I surveyed participants after engaging in the experience to better understand their perceptions and interpretations of the experience. With the responses of participants' experiences and collective reflection upon the project I can begin to think about future iterations and how they might contain applications in health and/or wellness.

ContributorsHaagen, Jordan (Author) / Turaga, Pavan (Thesis director) / Drummond Otten, Caitlin (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-05
165197-Thumbnail Image.png
ContributorsHaagen, Jordan (Author) / Turaga, Pavan (Thesis director) / Drummond Otten, Caitlin (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor)
Created2022-05
165198-Thumbnail Image.jpg
ContributorsHaagen, Jordan (Author) / Turaga, Pavan (Thesis director) / Drummond Otten, Caitlin (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor)
Created2022-05