This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

154965-Thumbnail Image.png
Description
The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple

The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple to Standard Model fields through Higgs Portal or Kinetic Mixing operators and radiate particles that contribute to the diffuse gamma ray background. In this work we calculate the properties of these strings, including finding effective couplings between the strings and Standard Model fields. Explosive particle production after inflation, known as preheating, would have produced a stochastic background of gravitational waves (GW). This work shows how the presence of realistic additional fields and interactions can affect this prediction dramatically. Specifically, it considers the inflaton to be coupled to a light scalar field, and shows that even a very small quartic self-interaction term will reduce the amplitude of the gravitational wave spectrum. For self-coupling $\lambda_{\chi} \gtrsim g^2$, where $g^2$ is the inflaton-scalar coupling, the peak energy density goes as $\Omega_{\rm GW}^{(\lambda_{\chi})} / \Omega_{\rm GW}^{(\lambda_{\chi}=0)} \sim (g^2/\lambda_{\chi})^{2}$. Finally, leptonic charge-parity (CP) violation could be an important clue to understanding the origin of our universe's matter-antimatter asymmetry, and long-baseline neutrino oscillation experiments in the coming decade may uncover this. The CP violating effects of a possible fourth ``sterile" neutrino can interfere with the usual three neutrinos; this work shows how combinations of various measurements can help break those degeneracies.
ContributorsHyde, Jeffrey Morgan (Author) / Vachaspati, Tanmay (Thesis advisor) / Easson, Damien (Committee member) / Belitsky, Andrei (Committee member) / Comfort, Joseph (Committee member) / Arizona State University (Publisher)
Created2016
158451-Thumbnail Image.png
Description
Granular material can be found in many industries and undergo process steps like drying, transportation, coating, chemical, and physical conversions. Understanding and optimizing such processes can save energy as well as material costs, leading to improved products. Silica beads are one such granular material encountered in many industries as a

Granular material can be found in many industries and undergo process steps like drying, transportation, coating, chemical, and physical conversions. Understanding and optimizing such processes can save energy as well as material costs, leading to improved products. Silica beads are one such granular material encountered in many industries as a catalyst support material. The present research aims to obtain a fundamental understanding of the hydrodynamics and heat transfer mechanisms in silica beads. Studies are carried out using a hopper discharge bin and a rotary drum, which are some of the most common process equipment found in various industries. Two types of micro-glass beads with distinct size distributions are used to fill the hopper in two possible packing arrangements with varying mass ratios. For the well-mixed configuration, the fine particles clustered at the hopper bottom towards the end of the discharge. For the layered configuration, the coarse particles packed at the hopper bottom discharge first, opening a channel for the fine particles on the top. Also, parameters such as wall roughness (WR) and particle roughness (PR) are studied by etching the particles. The discharge rate is found to increase with WR, and found to be proportional to (Root mean square of PR)^(-0.58). Furthermore, the drum is used to study the conduction and convection heat transfer behavior of the particle bed with varying process conditions. A new non-invasive temperature measurement technique is developed using infrared thermography, which replaced the traditional thermocouples, to record the temperatures of the particles and the drum wall. This setup is used to understand the flow regimes of the particle bed inside the drum and the heat transfer mechanisms with varying process conditions. The conduction heat transfer rate is found to increase with decreasing particle size, decreasing fill level, and increasing rotation speed. The convection heat transfer rate increased with increasing fill level and decreasing particle size, and rotation speed had no significant effect. Due to the complexities in these systems, it is not always possible to conduct experiments, therefore, heat transfer models in Discrete Element Method codes (MFIX-DEM: open-source code, and EDEM: commercial code) are adopted, validated, and the effects of model parameters are studied using these codes.
ContributorsAdepu, Manogna (Author) / Emady, Heather (Thesis advisor) / Jiao, Yang (Committee member) / Green, Matthew (Committee member) / Thomas, Marylaura (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2020
161763-Thumbnail Image.png
Description
Granular materials demonstrate complexity in many physical attributes with various shapes and sizes, varying from several centimeters down to less than a few microns. Some materials are highly cohesive, while others are free-flowing. Despite such complexity in their physical properties, they are extremely important in industries dealing with bulk materials.

Granular materials demonstrate complexity in many physical attributes with various shapes and sizes, varying from several centimeters down to less than a few microns. Some materials are highly cohesive, while others are free-flowing. Despite such complexity in their physical properties, they are extremely important in industries dealing with bulk materials. Through this research, the factors affecting flowability of particulate solids and their interaction with projectiles were explored. In Part I, a novel set of characterization tools to relate various granular material properties to their flow behavior in confined and unconfined environments was investigated. Through this work, a thorough characterization study to examine the effects of particle size, particle size distribution, and moisture on bulk powder flowability were proposed. Additionally, a mathematical model to predict the flow function coefficient (FFC) was developed, based on the surface mean diameter and moisture level, which can serve as a flowability descriptor. Part II of this research focuses on the impact dynamics of low velocity projectiles on granular media. Interaction of granular media with external foreign bodies occurs in everyday events like a human footprint on the beach. Several studies involving numerical and experimental methods have focused on the study of impact dynamics in both dry and wet granular media. However, most of the studies involving impact dynamics considered spherical projectiles under different conditions, while practical models should involve more complex, realistic shapes. Different impacting geometries with conserved density, volume, and velocity on a granular bed may experience contrasting drag forces upon penetration. This is due to the difference in the surface areas coming into contact with the granular media. In this study, a set of non-spherical geometries comprising cuboids, cylinders, hexagonal prisms and triangular prisms with constant density, volume, and impact velocities, were released onto a loosely packed, non-cohesive, dry granular bed. From these experimental results, a model to determine the penetration depth of projectiles upon impact was developed and how it is influenced by the release height and surface area of the projectiles in contact with the granular media was studied.
ContributorsVajrala, Spandana (Author) / Emady, Heather N (Thesis advisor) / Marvi, Hamidreza (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
154376-Thumbnail Image.png
Description
The muon problem of flavor physics presents a rich opportunity to study beyond standard model physics. The as yet undiscovered bound state (μ+μ-), called true muonium, presents a unique opportunity to investigate the muon problem. The near-future experimental searches for true muonium will produce it relativistically, preventing the easy application

The muon problem of flavor physics presents a rich opportunity to study beyond standard model physics. The as yet undiscovered bound state (μ+μ-), called true muonium, presents a unique opportunity to investigate the muon problem. The near-future experimental searches for true muonium will produce it relativistically, preventing the easy application of non-relativistic quantum mechanics. In this thesis, quantum field theory methods based on light-front quantization are used to solve an effective Hamiltonian for true muonium in the Fock space of |μ+μ-> , |μ+μ-γ> , |e+e->, |e+e-γ>, |τ+τ-> , and |τ+τ-γ> . To facilitate these calculations a new parallel code, True Muonium Solver With Front-Form Techniques (TMSWIFT), has been developed. Using this code, numerical results for the wave functions, energy levels, and decay constants of true muonium have been obtained for a range of coupling constants α. Work is also presented for deriving the effective interaction arising from the |γγ sector’s inclusion into the model.
ContributorsLamm, Henry (Author) / Lebed, Richard F (Thesis advisor) / Belitsky, Andrei (Committee member) / Alarcon, Ricardo (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2016