This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153364-Thumbnail Image.png
Description
The thrill of a live performance can enhance endorphin, serotonin, dopamine, and adrenaline levels in the body. This mixture of heightened chemical levels is a result of "performance adrenaline." This phenomenon can positively and/or negatively affect a performing singer. A singer's body is her instrument, and therefore,

The thrill of a live performance can enhance endorphin, serotonin, dopamine, and adrenaline levels in the body. This mixture of heightened chemical levels is a result of "performance adrenaline." This phenomenon can positively and/or negatively affect a performing singer. A singer's body is her instrument, and therefore, any bodily change can alter the singing voice. The uptake of these chemicals can especially influence a central aspect of singing: breath. "Performance adrenaline" can induce shallow or clavicular breathing, alter phonation, and affect vibrato. To optimize the positive effects and counteract the negative, diaphragmatic breathing, yoga, and beta-blockers are explored as viable management tools. When managed properly, the boost offered by "performance adrenaline" can aid the singer in performing and singing. After a review of medical and psychological studies that reveal the physiological and emotional effects of endorphins, serotonin, dopamine, and adrenaline, this paper will explore the biological changes specific to vocalists and methods to optimize these effects in performance.
ContributorsPaige, Belinda Roseann (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
150207-Thumbnail Image.png
Description
Fibromyalgia (FM) is a chronic musculoskeletal disorder characterized by widespread pain, fatigue, and a variety of other comorbid physiological and psychological characteristics, including a deficit of positive affect. Recently, the focus of research on the pathophysiology of FM has considered the role of a number of genomic variants. In the

Fibromyalgia (FM) is a chronic musculoskeletal disorder characterized by widespread pain, fatigue, and a variety of other comorbid physiological and psychological characteristics, including a deficit of positive affect. Recently, the focus of research on the pathophysiology of FM has considered the role of a number of genomic variants. In the current manuscript, case-control analyses did not support the hypothesis that FM patients would differ from other chronic pain groups in catechol-O-methyltransferase (COMT) and mu-opioid receptor (OPRM1) genotype. However, evidence is provided in support of the hypothesis that functional single nucleotide polymorphisms on the COMT and OPRM1 genes would be associated with risk and resilience, respectively, in a dual processing model of pain-related positive affective regulation in FM. Forty-six female patients with a physician-confirmed diagnosis of FM completed an electronic diary that included once-daily assessments of positive affect and soft tissue pain. Multilevel modeling yielded a significant gene X environment interaction, such that individuals with met/met genotype on COMT experienced a greater decline in positive affect as daily pain increased than did either val/met or val/val individuals. A gene X environment interaction for OPRM1 also emerged, indicating that individuals with at least one asp allele were more resilient to elevations in daily pain than those homozygous for the asn allele. In sum, the findings offer researchers ample reason to further investigate the contribution of the catecholamine and opioid systems, and their associated genomic variants, to the still poorly understood experience of FM.
ContributorsFinan, Patrick Hamilton (Author) / Zautra, Alex (Thesis advisor) / Davis, Mary (Committee member) / Lemery-Chalfant, Kathryn (Committee member) / Presson, Clark (Committee member) / Arizona State University (Publisher)
Created2011