This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 13
152023-Thumbnail Image.png
Description
Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation

Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. BDNF modulates synaptic plasticity, and facilitates stress- and drug-induced neuroadaptations in the mesocorticolimbic system. The present research examined the role of mesolimbic BDNF signaling in social defeat stress-induced cross-sensitization to psychostimulants and the escalation of cocaine self-administration in rats. We measured drug taking behavior with the acquisition, progressive ratio, and binge paradigms during self-administration. With BDNF overexpression in the ventral tegmental area (VTA), single social defeat stress-induced cross-sensitization to amphetamine (AMPH) was significantly potentiated. VTA-BDNF overexpression also facilitates acquisition of cocaine self-administration, and a positive correlation between the level of VTA BDNF and drug intake during 12 hour binge was observed. We also found significant increase of DeltaFosB expression in the nucleus accumbens (NAc), the projection area of the VTA, in rats received intra-VTA BDNF overexpression. We therefore examined whether BDNF signaling in the NAc is important for social defeat stress-induced cross-sensitization by knockdown of the receptor of BDNF (neurotrophin tyrosine kinase receptor type 2, TrkB) there. NAc TrkB knockdown prevented social defeat stress-induced cross-sensitization to psychostimulant. Also social defeat stress-induced increase of DeltaFosB in the NAc was prevented by TrkB knockdown. Several other factors up-regulated by stress, such as the GluA1 subunit of Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and BDNF in the VTA were also prevented. We conclude that BDNF signaling in the VTA increases social defeat stress-induced vulnerability to psychostimulants, manifested as potentiated cross-sensitization/sensitization to AMPH and escalation of cocaine self-administration. Also BDNF signaling in the NAc is necessary for the stress-induced neuroadaptation and behavioral sensitization to psychostimulants. Therefore, TrkB in the NAc could be a therapeutic target to prevent stress-induced vulnerability to drugs of abuse in the future. DeltaFosB in the NAc shell could be a neural substrate underlying persistent cross-sensitization and augmented cocaine self-administration induced by social defeat stress.
ContributorsWang, Junshi (Author) / Hammer, Ronald (Thesis advisor) / Feuerstein, Burt (Committee member) / Nikulina, Ella (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2013
151615-Thumbnail Image.png
Description
Patients with schizophrenia have deficits in sensorimotor gating, the ability to gate out irrelevant stimuli in order to attend to relevant stimuli. Prepulse inhibition (PPI) of the startle response is a reliable and valid model of sensorimotor gating across species. Repeated D2-like agonist treatment alleviates prior PPI deficits in rats,

Patients with schizophrenia have deficits in sensorimotor gating, the ability to gate out irrelevant stimuli in order to attend to relevant stimuli. Prepulse inhibition (PPI) of the startle response is a reliable and valid model of sensorimotor gating across species. Repeated D2-like agonist treatment alleviates prior PPI deficits in rats, termed a PPI recovery, and is observable 28 days after treatment. The aim of the current project is to illuminate the underlying mechanism for this persistent change of behavior and determine the clinical relevance of repeated D2-like agonist treatment. Our results revealed a significant increase in Delta FosB, a transcription factor, in the nucleus accumbens (NAc) 10 days after repeated D2-like agonist treatment. Additionally, we investigated if Delta FosB was necessary for long-lasting PPI recovery and discovered a bilateral infusion of dominant-negative Delta JunD prevented PPI recovery after repeated D2-like agonist treatment. To further develop the underlying mechanism of PPI recovery, we observed that dominant negative mutant cyclic adenosine monophosphate (cAMP) response biding element protein (CREB) prevented repeated D2-like agonist-induced Delta FosB expression in the NAc. We then compared our previous behavioral and intracellular findings to the results of repeated aripiprazole, a novel D2-like partial agonist antipsychotic, to determine if repeated D2-like receptor agonist action is a clinically relevant pharmacological approach. As compared to previous PPI recovery and Delta FosB expression after repeated D2-like agonist treatment, we found similar PPI recovery and Delta FosB expression after repeated aripiprazole treatment in rats. We can conclude that repeated D2-like agonist treatment produces persistent PPI recovery through CREB phosphorylation and Delta FosB, which is necessary for PPI recovery. Furthermore, this pharmacological approach produces behavioral and intracellular changes similar to an effective novel antipsychotic. These findings suggest the underlying intracellular mechanism for sustained PPI recovery is clinically relevant and may be a potential target of therapeutic intervention to alleviate sensorimotor gating deficits, which are associated with cognitive symptoms of schizophrenia.
ContributorsMaple, Amanda (Author) / Hammer, Ronald P. (Thesis advisor) / Olive, Michael F (Committee member) / Gallitano, Amelia L (Committee member) / Conrad, Cheryl D. (Committee member) / Nikulina, Ella M (Committee member) / Arizona State University (Publisher)
Created2013
Description
ABSTRACT



Auditory hallucinations are a characteristic symptom of schizophrenia. Research has documented that the auditory cortex is metabolically activated when this process occurs, and that imbalances in the dopaminergic transmission in the striatum contribute to its physiopathology. Most animal models have focused the effort on pharmacological approaches like

ABSTRACT



Auditory hallucinations are a characteristic symptom of schizophrenia. Research has documented that the auditory cortex is metabolically activated when this process occurs, and that imbalances in the dopaminergic transmission in the striatum contribute to its physiopathology. Most animal models have focused the effort on pharmacological approaches like non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists to produce activation of the auditory cortex, or dopamine antagonists to alleviate it. I hypothesize that these perceptual phenomena can be explained by an imbalance activation of spiny projecting neurons in the striatal pathways, whereby supersensitive postsynaptic D2-like receptor, signaling in the posterior caudatoputamen generates activation of the auditory cortex. Therefore, I characterized the neuroanatomical component involved in the activation of the auditory cortex. I evaluated the participation of dopamine D2-like receptor using selective dopamine antagonist manipulations and identified the circuits related to the auditory cortex by retrograde trans-synaptic tracing using pseudorabies virus (PRV-152). My results show that dopamine infused in the posterior caudatoputamen dose dependently increases the transcription of the immediate early gene, zif268 in the auditory cortex, predominantly in layers III and IV, but also in cortical columns, suggesting enhanced functional auditory activity. This indicates the participation of the posterior striatum in the modulation of the secondary auditory cortex. I was able to demonstrate also that a coinfusion of a selective dopamine D2-like receptor antagonist, eticlopride and dopamine, attenuate the activation of the auditory cortex. Furthermore, using PRV-152 I delineate the distinctive circuit by axial mapping of the infected neurons. Thus, I found secondary projections from the posterior caudatoputamen that synapse in the thalamus before reaching the auditory cortex. These striatal projections correspond to the same brain region affected by dopamine during auditory cortical activation. My results further characterized a mechanism to generate intrinsic perception of sound that may be responsible for auditory hallucinations. I propose this paradigm may elucidate insight on the biological basis of psychotic behavior.
ContributorsParga Becerra, Alejandro (Author) / Neisewander, Janet (Thesis advisor) / Hammer, Ronald (Thesis advisor) / Gallitano-Mendel, Amelia (Committee member) / McLoone, Jim (Committee member) / Vu, Jie (Committee member) / Arizona State University (Publisher)
Created2014
153364-Thumbnail Image.png
Description
The thrill of a live performance can enhance endorphin, serotonin, dopamine, and adrenaline levels in the body. This mixture of heightened chemical levels is a result of "performance adrenaline." This phenomenon can positively and/or negatively affect a performing singer. A singer's body is her instrument, and therefore,

The thrill of a live performance can enhance endorphin, serotonin, dopamine, and adrenaline levels in the body. This mixture of heightened chemical levels is a result of "performance adrenaline." This phenomenon can positively and/or negatively affect a performing singer. A singer's body is her instrument, and therefore, any bodily change can alter the singing voice. The uptake of these chemicals can especially influence a central aspect of singing: breath. "Performance adrenaline" can induce shallow or clavicular breathing, alter phonation, and affect vibrato. To optimize the positive effects and counteract the negative, diaphragmatic breathing, yoga, and beta-blockers are explored as viable management tools. When managed properly, the boost offered by "performance adrenaline" can aid the singer in performing and singing. After a review of medical and psychological studies that reveal the physiological and emotional effects of endorphins, serotonin, dopamine, and adrenaline, this paper will explore the biological changes specific to vocalists and methods to optimize these effects in performance.
ContributorsPaige, Belinda Roseann (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
150207-Thumbnail Image.png
Description
Fibromyalgia (FM) is a chronic musculoskeletal disorder characterized by widespread pain, fatigue, and a variety of other comorbid physiological and psychological characteristics, including a deficit of positive affect. Recently, the focus of research on the pathophysiology of FM has considered the role of a number of genomic variants. In the

Fibromyalgia (FM) is a chronic musculoskeletal disorder characterized by widespread pain, fatigue, and a variety of other comorbid physiological and psychological characteristics, including a deficit of positive affect. Recently, the focus of research on the pathophysiology of FM has considered the role of a number of genomic variants. In the current manuscript, case-control analyses did not support the hypothesis that FM patients would differ from other chronic pain groups in catechol-O-methyltransferase (COMT) and mu-opioid receptor (OPRM1) genotype. However, evidence is provided in support of the hypothesis that functional single nucleotide polymorphisms on the COMT and OPRM1 genes would be associated with risk and resilience, respectively, in a dual processing model of pain-related positive affective regulation in FM. Forty-six female patients with a physician-confirmed diagnosis of FM completed an electronic diary that included once-daily assessments of positive affect and soft tissue pain. Multilevel modeling yielded a significant gene X environment interaction, such that individuals with met/met genotype on COMT experienced a greater decline in positive affect as daily pain increased than did either val/met or val/val individuals. A gene X environment interaction for OPRM1 also emerged, indicating that individuals with at least one asp allele were more resilient to elevations in daily pain than those homozygous for the asn allele. In sum, the findings offer researchers ample reason to further investigate the contribution of the catecholamine and opioid systems, and their associated genomic variants, to the still poorly understood experience of FM.
ContributorsFinan, Patrick Hamilton (Author) / Zautra, Alex (Thesis advisor) / Davis, Mary (Committee member) / Lemery-Chalfant, Kathryn (Committee member) / Presson, Clark (Committee member) / Arizona State University (Publisher)
Created2011
149898-Thumbnail Image.png
Description
Externalizing behaviors are pervasive, widespread, and disruptive across a multitude of settings and developmental contexts. While the conventional diathesis-stress model typically measures the disordered end of the spectrum, studies that span the range of behavior, from externalizing to competence behaviors, are necessary to see the full picture. To that end,

Externalizing behaviors are pervasive, widespread, and disruptive across a multitude of settings and developmental contexts. While the conventional diathesis-stress model typically measures the disordered end of the spectrum, studies that span the range of behavior, from externalizing to competence behaviors, are necessary to see the full picture. To that end, this study examined the additive and nonadditive relations of a dimension of parenting (ranging from warm to rejecting), and variants in dopamine, vasopressin, and neuropeptide-y receptor genes on externalizing/competence in a large sample of predominantly Caucasian twin children in toddlerhood, middle childhood, and early adolescence. Variants within each gene were hypothesized to increase biological susceptibility to both negative and positive environments. Consistent with prediction, warmth related to lower externalizing/higher competence at all ages. Earlier levels of externalizing/competence washed out the effect of parental warmth on future externalizing/competence with the exception of father warmth in toddlerhood marginally predicting change in externalizing/competence from toddlerhood to middle childhood. Warmth was a significant moderator of the heritability of behavior in middle childhood and early adolescence such that behavior was less heritable (mother report) and more heritable (father report) in low warmth environments. Interactions with warmth and the dopamine and vasopressin genes in middle childhood and early adolescence emphasize the moderational role gene variants play in relations between the rearing environment and child behavior. For dopamine, the long variant related to increased sensitivity to parent warmth such that the children displayed more externalizing behaviors when exposed to rejection but they also displayed more competence behaviors when exposed to high warmth. Vasopressin moderation was only present under conditions of parental warmth, not rejection. Interactions with neuropeptide-y and warmth were not significant. The picture that emerges is one of gene-environment interplay, wherein the influence of both parenting and child genotype each depend on the level of the other. As genetic research moves forward, gene variants previously implicated as conferring risk for disorder should be reexamined in conjunction with salient aspects of the environment on the full range of the behavioral outcome of interest.
ContributorsO'Brien, T. Caitlin (Author) / Lemery-Chalfant, Kathryn (Thesis advisor) / Eisenberg, Nancy (Committee member) / Enders, Craig (Committee member) / Nagoshi, Craig (Committee member) / Arizona State University (Publisher)
Created2011
150809-Thumbnail Image.png
Description
Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to

Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to generate and explore hypotheses. This work develops a model of DA dynamics in a representative, single DA neuron by integrating previous experimental, theoretical and computational research. The model consists of three compartments: the cytosol, the vesicles, and the extracellular space and forms the basis of a new mathematical paradigm for examining the dynamics of DA synthesis, storage, release and reuptake. The model can be driven by action potentials generated by any model of excitable membrane potential or even from experimentally induced depolarization voltage recordings. Here the model is forced by a previously published model of the excitable membrane of a mesencephalic DA neuron in order to study the biochemical processes involved in extracellular DA production. After demonstrating that the model exhibits realistic dynamics resembling those observed experimentally, the model is used to examine the functional changes in presynaptic mechanisms due to application of cocaine. Sensitivity analysis and numerical studies that focus on various possible mechanisms for the inhibition of DAT by cocaine provide insight for the complex interactions involved in DA dynamics. In particular, comparing numerical results for a mixed inhibition mechanism to those for competitive, non-competitive and uncompetitive inhibition mechanisms reveals many behavioral similarities for these different types of inhibition that depend on inhibition parameters and levels of cocaine. Placing experimental results within this context of mixed inhibition provides a possible explanation for the conflicting views of uptake inhibition mechanisms found in experimental neuroscience literature.
ContributorsTello-Bravo, David (Author) / Crook, Sharon M (Thesis advisor) / Greenwood, Priscilla E (Thesis advisor) / Baer, Steven M. (Committee member) / Castaneda, Edward (Committee member) / Castillo-Chavez, Carlos (Committee member) / Arizona State University (Publisher)
Created2012
136985-Thumbnail Image.png
Description
Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine
ContributorsLynn, Jeffrey Spencer (Author) / Neisewander, Janet (Thesis director) / Orchinik, Miles (Committee member) / Bastle, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
155600-Thumbnail Image.png
Description
Performance on working memory (WM) and fluid intelligence tasks (gF) is often highly correlated. However, recent research by Shipstead, Harrison, & Engle (2016) has suggested that dissociable cognitive processes underlie performance on WM and gF tasks, such that WM task performance is contingent upon maintenance of relevant information while gF

Performance on working memory (WM) and fluid intelligence tasks (gF) is often highly correlated. However, recent research by Shipstead, Harrison, & Engle (2016) has suggested that dissociable cognitive processes underlie performance on WM and gF tasks, such that WM task performance is contingent upon maintenance of relevant information while gF task performance is contingent upon disengaging from irrelevant information so that updating can occur. The aim of the current study was to test the proposal that the dopamine gating system, a neurological mechanism underlying information encoding and updating, is a plausible mechanism underlying the abilities identified by Shipstead and colleagues that are separately unique to WM and gF. Sixty-three participants completed a task that measured ability to maintain and update information, and is neurologically known to reflect functionality of the dopamine gating system during updating performance. The results indicate that individual differences in updating performance are predicted by gF, but not by WM. This suggests that the ability to disengage from irrelevant information is facilitated by distinct processes in the dopamine gating system, and is a distinguishing component of gF.
ContributorsNespodzany, Ashley (Author) / Burleson, Mary H (Thesis advisor) / Duran, Nicholas (Committee member) / Robles-Sotelo, Elias (Committee member) / Arizona State University (Publisher)
Created2017
148147-Thumbnail Image.png
Description

Seven human subjects with body mass indices (BMIs) ranging from 19.4 kg/ m2 to 26.7 kg/ m2 and six human subjects with BMIs ranging from 32.1 kg/ m2 to 37.6 kg/ m2 were recruited and subjected to 45-minute bouts of acute exercise to look at the changes in the plasma

Seven human subjects with body mass indices (BMIs) ranging from 19.4 kg/ m2 to 26.7 kg/ m2 and six human subjects with BMIs ranging from 32.1 kg/ m2 to 37.6 kg/ m2 were recruited and subjected to 45-minute bouts of acute exercise to look at the changes in the plasma concentration of the dopamine metabolite homovanillic acid (HVA) in response to acute physical activity. Plasma HVA concentration was measured before exercise and during the last 10 minutes of the exercise bout via competitive ELISA. On average the optical density (OD) of the samples taken from lean subjects decreased from 0.203 before exercise to 0.192 during exercise, indicating increased plasma HVA concentration. In subjects with obesity OD increased from 0.210 before exercise to 0.219 during exercise, indicating reduced plasma HVA concentration. These differences in OD were not statistically significant. Between the lean group and the group with obesity no significant difference was observed between the OD of the plasma samples taken before exercise, but a significant difference (p = 0.0209) was observed between the ODs of the samples taken after exercise. This indicated that there was a significant difference between the percent changes in OD between the lean group and the group with obesity, which suggested that there may be a body weight-dependent difference in the amount of dopamine released in response to exercise. Because of the lack of significance in the changes in OD within the lean group and the group with obesity the results of this study were insufficient to conclude that this difference is not due to chance, but further investigation is warranted.

ContributorsYoder, Jordan Corinne (Author) / Katsanos, Christos (Thesis director) / Davies, Pauline (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05