This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 5 of 5
Filtering by

Clear all filters

Description

Three models have been created to visualize and characterize the voltage response of a standing wave accelerating cavity system. These models are generalized to fit any cavity with known values of the quality factor, coupling factor, and resonant frequency but were applied to the Arizona State Universities Compact X-ray Free

Three models have been created to visualize and characterize the voltage response of a standing wave accelerating cavity system. These models are generalized to fit any cavity with known values of the quality factor, coupling factor, and resonant frequency but were applied to the Arizona State Universities Compact X-ray Free Electron Laser. To model these systems efficiently, baseband I and Q measurements were used to eliminate the modeling of high frequencies. The three models discussed in this paper include a single standing wave cavity, two cavities coupled through a 3dB quadrature hybrid, and a pulse compression system. The second model on two coupled cavities will demonstrate how detuning will impact two cavities with the same RF source split through a hybrid. The pulse compression model will be used to demonstrate the impact of feeding pulse compression into a standing wave cavity. The pulse compressor will demonstrate more than a 50\% increase of the voltage inside the cavity.

ContributorsFalconer, Jasmin (Author) / Graves, William (Thesis director) / Kitchen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
Description
Every year, Arizona mobile home residents suffer hundreds of fatalities and severe illnesses due to the effects of extreme heat within their homes exacerbated by high energy costs, a lack of energy-efficient infrastructure, and underlying socio-economic issues. Many of these deaths and severe illnesses can be prevented via active monitoring and

Every year, Arizona mobile home residents suffer hundreds of fatalities and severe illnesses due to the effects of extreme heat within their homes exacerbated by high energy costs, a lack of energy-efficient infrastructure, and underlying socio-economic issues. Many of these deaths and severe illnesses can be prevented via active monitoring and reporting of temperature and humidity data from these living spaces. The team will design, build, test, and implement a Heat Warning Detection System (HWDS) to mitigate heat-related illnesses and deaths. The HWDS will detect when temperature and humidity levels have reached a dangerous threshold and will issue notifications to the emergency contacts of the resident over SMS and/or email. This will allow for timely preventative measures to be taken to ensure the safety of the resident. The team will investigate the ideal threshold to notify the mobile home residents. HWDS will require minimal user interaction. Apart from the initial physical installation of the device, the user will have to provide a list of emergency contacts that they would like the system to notify in the event that HWDS detects dangerous conditions in their residence. By deploying prototypes of HWDS to volunteer participant homes, we will be able to validate the functionality of the system as well as the usability of the physical device by homeowners. HWDS provides homeowners and their loved ones with the opportunity to take preventative measures before being exposed to conditions that could potentially have more severe implications. In the spirit of promoting accessibility and prevention among the most vulnerable communities in Greater Phoenix, our team partners with the Knowledge Exchange for Resilience at ASU (KER) to interface with organizations such as the Arizona Association of Manufactured Home, RV & Park Model Owners (AAMHO) to promote legislation and subsidies aimed towards making solutions such as ours more financially viable for the communities that need it most.
ContributorsDrake, Thomas (Author) / Yeager, William (Co-author) / Ward, Trenton (Co-author) / Schoepf, Jared (Thesis director) / Solís, Patricia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
ContributorsDrake, Thomas (Author) / Yeager, William (Co-author) / Ward, Trenton (Co-author) / Schoepf, Jared (Thesis director) / Solís, Patricia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
ContributorsDrake, Thomas (Author) / Yeager, William (Co-author) / Ward, Trenton (Co-author) / Schoepf, Jared (Thesis director) / Solís, Patricia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
161075-Thumbnail Image.png
Description

This project examines the dynamics and design of control systems for a rocket in propulsive ascent and descent using a simplified model with motion constrained to a vertical plane. The governing differential equations are analyzed. They are then linearized, after which transfer functions are derived relating controllable input variables to

This project examines the dynamics and design of control systems for a rocket in propulsive ascent and descent using a simplified model with motion constrained to a vertical plane. The governing differential equations are analyzed. They are then linearized, after which transfer functions are derived relating controllable input variables to controlled output variables. The effect of changes in various parameters as well as other aspects of the system are examined. Methods for controller design based on the derived transfer functions are discussed. This will include the discussion of control of the final descent and landing of the rocket. Lastly, there is a brief discussion about both the successes and limitations of the model analyzed.

ContributorsWarner, Adin (Author) / Rodriguez, Armando (Thesis director) / Shafique, Ashfaque (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2021-12