This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

133878-Thumbnail Image.png
Description
The purpose of this study was to examine the influence of Assisted Cycling Therapy (ACT) on depression in older adults with Down Syndrome (DS). We predicted that older adults with Down Syndrome would see an improvement in their depressive symptoms after ACT and Voluntary Cycling (VC). However, we predicted there

The purpose of this study was to examine the influence of Assisted Cycling Therapy (ACT) on depression in older adults with Down Syndrome (DS). We predicted that older adults with Down Syndrome would see an improvement in their depressive symptoms after ACT and Voluntary Cycling (VC). However, we predicted there would be a greater improvement in depressive symptoms after ACT in comparison to VC. Depression was measured using a modified version of the Children's Depression Inventory 2 (CDI 2) due to the low mental age of our participant population. Twenty-one older adults with DS were randomly assigned to one of three interventions, which took place over an eight-week period of time. Eleven older adults with DS completed the ACT intervention, which is stationary cycling on a recumbent bicycle with the assistance of a motor to maintain a cadence at least 35% greater than the rate of voluntary cycling. Nine participants completed the voluntary cycling intervention, where they cycled at a cadence of their choosing. One participant composed our no cycling control group. No intervention group reached results that achieved a conventional level of significance. However, there was a trend for depression to increase after 8 weeks throughout all three intervention groups. We did see a slightly slower regression of depression in the ACT group than the VC and control. Our results were discussed with respect to social and cognitive factors relevant to older adults with DS and the subjective nature of the CDI2. This study brings attention to the lack of accurate measures and standardized research methods created for populations with intellectual disabilities in regards to research.
ContributorsBeaman, Emily Kiernan (Author) / Ringenbach, Shannon (Thesis director) / Bosch, Pamela (Committee member) / Department of Management and Entrepreneurship (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134004-Thumbnail Image.png
Description
The purpose of this project is to present and consolidate current research on various nutrients and diet patterns and assess their role on the development of Alzheimer's Disease. I will begin with an explanation of Alzheimer's Disease that includes general health related information and the statistical prevalence of the disease.

The purpose of this project is to present and consolidate current research on various nutrients and diet patterns and assess their role on the development of Alzheimer's Disease. I will begin with an explanation of Alzheimer's Disease that includes general health related information and the statistical prevalence of the disease. Following the informational overview, I will be presenting the most current research and summarizing the findings for seven single nutrients and five dietary patterns. Following the assessment will be an expository segment discussing epigenetics nutrigenomics and how this process works with different nutrients and diet patterns to impact the likelihood of developing Alzheimer's Disease from a genetic perspective. Based on the research found in the single nutrients segment, the dietary pattern segment, and the epigenetics nutrigenomics segment, I will conclude with a holistic diet plan that is the most preventative against Alzheimer's Disease.
ContributorsStea, Alexandra Rose (Author) / Martinelli, Sarah (Thesis director) / Pereira, Claudiney (Committee member) / W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
161945-Thumbnail Image.png
Description
Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand,

Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand, the outer surface along with its enclosed internal volume can be taken as a three-dimensional embedding of interests. Most studies focus on the surface-based perspective by leveraging the intrinsic features on the tangent plane. But a two-dimensional model may fail to fully represent the realistic properties of shapes with both intrinsic and extrinsic properties. In this thesis, severalStochastic Partial Differential Equations (SPDEs) are thoroughly investigated and several methods are originated from these SPDEs to try to solve the problem of both two-dimensional and three-dimensional shape analyses. The unique physical meanings of these SPDEs inspired the findings of features, shape descriptors, metrics, and kernels in this series of works. Initially, the data generation of high-dimensional shapes, here, the tetrahedral meshes, is introduced. The cerebral cortex is taken as the study target and an automatic pipeline of generating the gray matter tetrahedral mesh is introduced. Then, a discretized Laplace-Beltrami operator (LBO) and a Hamiltonian operator (HO) in tetrahedral domain with Finite Element Method (FEM) are derived. Two high-dimensional shape descriptors are defined based on the solution of the heat equation and Schrödinger’s equation. Considering the fact that high-dimensional shape models usually contain massive redundancies, and the demands on effective landmarks in many applications, a Gaussian process landmarking on tetrahedral meshes is further studied. A SIWKS-based metric space is used to define a geometry-aware Gaussian process. The study of the periodic potential diffusion process further inspired the idea of a new kernel call the geometry-aware convolutional kernel. A series of Bayesian learning methods are then introduced to tackle the problem of shape retrieval and classification. Experiments of every single item are demonstrated. From the popular SPDE such as the heat equation and Schrödinger’s equation to the general potential diffusion equation and the specific periodic potential diffusion equation, it clearly shows that classical SPDEs play an important role in discovering new features, metrics, shape descriptors and kernels. I hope this thesis could be an example of using interdisciplinary knowledge to solve problems.
ContributorsFan, Yonghui (Author) / Wang, Yalin (Thesis advisor) / Lepore, Natasha (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021