This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
156767-Thumbnail Image.png
Description
Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is

Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is the primary environmental cue regulating reproductive development, but must be integrated with supplementary cues relating to local energetic conditions. Photoperiodic regulation of the reproductive neuroendocrine system is well described in seasonally breeding birds, but the mechanisms that these animals use to integrate supplementary cues remain unclear. I hypothesized that (a) environmental cues that negatively affect energy balance inhibit reproductive development by acting at multiple levels along the reproductive endocrine axis including the hypothalamus (b) that the availability of metabolic fuels conveys alterations in energy balance to the reproductive system. I investigated these hypotheses in male house finches, Haemorhous mexicanus, caught in the wild and brought into captivity. I first experimentally reduced body condition through food restriction and found that gonadal development and function are inhibited and these changes are associated with changes in hypothalamic gonadotropin-releasing hormone (GnRH). I then investigated this neuroendocrine integration and found that finches maintain reproductive flexibility through modifying the release of accumulated GnRH stores in response to energetic conditions. Lastly, I investigated the role of metabolic fuels in coordinating reproductive responses under two different models of negative energy balance, decreased energy intake (food restriction) and increased energy expenditure (high temperatures). Exposure to high temperatures lowered body condition and reduced food intake. Reproductive development was inhibited under both energy challenges, and occurred with decreased gonadal gene expression of enzymes involved in steroid synthesis. Minor changes in fuel utilization occurred under food restriction but not high temperatures. My results support the hypothesis that negative energy balance inhibits reproductive development through multilevel effects on the hypothalamus and gonads. These studies are among the first to demonstrate a negative effect of high temperatures on reproductive development in a wild bird. Overall, the above findings provide important foundations for investigations into adaptive responses of breeding in energetically variable environments.
ContributorsValle, Shelley (Author) / Deviche, Pierre (Thesis advisor) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Propper, Catherine (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2018
193390-Thumbnail Image.png
Description
Chronic low-grade inflammation is a main pathogenic link between obesity and Type 2 Diabetes (T2D) and a putative target for treatment. While a wide array of pharmacologic agents is available to manage T2D, many patients still face perturbed glycemia and subclinical inflammation. Therefore, complementary nutraceutical strategies that target inflammation, metabolism,

Chronic low-grade inflammation is a main pathogenic link between obesity and Type 2 Diabetes (T2D) and a putative target for treatment. While a wide array of pharmacologic agents is available to manage T2D, many patients still face perturbed glycemia and subclinical inflammation. Therefore, complementary nutraceutical strategies that target inflammation, metabolism, and resolution physiology hold promise as adjunctive options to quell the disturbed immuno-metabolic milieu observed in T2D. Omega-3 polyunsaturated fatty acids (PUFAs) and anthocyanins are two dietary components evidenced to mitigate inflammation and improve T2D risk factors, through distinct and similar targets. However, the combined use of such nutraceuticals has not yet been examined in individuals with T2D. This dissertation leveraged data from a larger randomized, double-blind, placebo-controlled trial conducted between January 2022—September 2023 investigating the use of combined supplementation (active treatment; [FOM]) of anthocyanins (600 mg/d maqui berry extract) and omega-3 PUFAs (3 g/day fish oil; 2 g/d EPA, 1 g/d DHA) for 8 weeks on cytokines and mental acuity in individuals with T2D, compared to a placebo (CON). The current study examined the effects of this supplemental strategy on markers of metabolic inflammation, oxidative stress, and cardiometabolic risk. The results indicated that a marker of sustained omega-3 dietary intake and tissue accumulation termed the Omega-3 Index was inversely associated with HbA1c (? = -8.5, 95%CI -15.1, -1.4, p = 0.022) and glucose (? = -12.4, 95%CI -22.9, -0.5, p = 0.042), after adjustment for covariates at baseline across all participants with T2D in this study. However, outcomes from linear mixed model analyses demonstrated that there were no significant differences in change from baseline between FOM and CON groups at week 8 in any of the inflammatory, oxidative stress, glycemic control, or circulating lipid markers assessed in this study. These null effects were observed despite a 93% greater increase from baseline in the Omega-3 Index observed in the FOM group compared to the CON group at week 8. Therefore, the findings do not support significant treatment effects associated with 2 months of combined marine omega-3 PUFAs and maqui berry extract on inflammatory and cardiometabolic outcomes in individuals with T2D.
ContributorsFessler, Samantha Nicole (Author) / Johnston, Carol S (Thesis advisor) / Sweazea, Karen (Committee member) / Wang, Shu (Committee member) / Kavouras, Stavros A (Committee member) / Grimm, Kevin J (Committee member) / Arizona State University (Publisher)
Created2024