This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

131186-Thumbnail Image.png
Description
Similar to the real numbers, the p-adic fields are completions of the rational numbers. However, distance in this space is determined based on divisibility by a prime number, p, rather than by the traditional absolute value. This gives rise to a peculiar topology which offers significant simplifications for p-adic continuous

Similar to the real numbers, the p-adic fields are completions of the rational numbers. However, distance in this space is determined based on divisibility by a prime number, p, rather than by the traditional absolute value. This gives rise to a peculiar topology which offers significant simplifications for p-adic continuous functions and p-adic integration than is present in the real numbers. These simplifications may present significant advantages to modern physics – specifically in harmonic analysis, quantum mechanics, and string theory. This project discusses the construction of the p-adic numbers, elementary p-adic topology, p-adic continuous functions, introductory p-adic measure theory, the q-Volkenborn distribution, and applications of p-adic numbers to physics. We define q-Volkenborn integration and its connection to Bernoulli numbers.
ContributorsBurgueno, Alyssa Erin (Author) / Childress, Nancy (Thesis director) / Jones, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor, Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135378-Thumbnail Image.png
Description
A problem of interest in theoretical physics is the issue of the evaporation of black holes via Hawking radiation subject to a fixed background. We approach this problem by considering an electromagnetic analogue, where we have substituted Hawking radiation with the Schwinger effect. We treat the case of massless QED

A problem of interest in theoretical physics is the issue of the evaporation of black holes via Hawking radiation subject to a fixed background. We approach this problem by considering an electromagnetic analogue, where we have substituted Hawking radiation with the Schwinger effect. We treat the case of massless QED in 1+1 dimensions with the path integral approach to quantum field theory, and discuss the resulting Feynman diagrams from our analysis. The results from this thesis may be useful to find a version of the Schwinger effect that can be solved exactly and perturbatively, as this version may provide insights to the gravitational problem of Hawking radiation.
ContributorsDhumuntarao, Aditya (Author) / Parikh, Maulik (Thesis director) / Davies, Paul C. W. (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05