This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

153488-Thumbnail Image.png
Description
Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents

Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents a set of computational methods, that generalize well across different conditions, for speech-based applications involving emotion recognition and keyword detection, and ambient sounds-based applications such as lifelogging.

The expression and perception of emotions varies across speakers and cultures, thus, determining features and classification methods that generalize well to different conditions is strongly desired. A latent topic models-based method is proposed to learn supra-segmental features from low-level acoustic descriptors. The derived features outperform state-of-the-art approaches over multiple databases. Cross-corpus studies are conducted to determine the ability of these features to generalize well across different databases. The proposed method is also applied to derive features from facial expressions; a multi-modal fusion overcomes the deficiencies of a speech only approach and further improves the recognition performance.

Besides affecting the acoustic properties of speech, emotions have a strong influence over speech articulation kinematics. A learning approach, which constrains a classifier trained over acoustic descriptors, to also model articulatory data is proposed here. This method requires articulatory information only during the training stage, thus overcoming the challenges inherent to large-scale data collection, while simultaneously exploiting the correlations between articulation kinematics and acoustic descriptors to improve the accuracy of emotion recognition systems.

Identifying context from ambient sounds in a lifelogging scenario requires feature extraction, segmentation and annotation techniques capable of efficiently handling long duration audio recordings; a complete framework for such applications is presented. The performance is evaluated on real world data and accompanied by a prototypical Android-based user interface.

The proposed methods are also assessed in terms of computation and implementation complexity. Software and field programmable gate array based implementations are considered for emotion recognition, while virtual platforms are used to model the complexities of lifelogging. The derived metrics are used to determine the feasibility of these methods for applications requiring real-time capabilities and low power consumption.
ContributorsShah, Mohit (Author) / Spanias, Andreas (Thesis advisor) / Chakrabarti, Chaitali (Thesis advisor) / Berisha, Visar (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2015
187831-Thumbnail Image.png
Description
This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize

This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize a decent basketball shot pattern? - by introducing a supervised learning paradigm, where the ML method takes acceleration attributes to predict the basketball shot efficiency. The solution presented in this study considers motion capture devices configuration on the right upper limb with a sole motion sensor made by BNO080 and ESP32 attached on the right wrist, right forearm, and right shoulder, respectively, By observing the rate of speed changing in the shooting movement and comparing their performance, ML models that apply K-Nearest Neighbor, and Decision Tree algorithm, conclude the best range of acceleration that different spots on the arm should implement.
ContributorsLiang, Chengxu (Author) / Ingalls, Todd (Thesis advisor) / Turaga, Pavan (Thesis advisor) / De Luca, Gennaro (Committee member) / Arizona State University (Publisher)
Created2023
158864-Thumbnail Image.png
Description
Infants born before 37 weeks of pregnancy are considered to be preterm. Typically, preterm infants have to be strictly monitored since they are highly susceptible to health problems like hypoxemia (low blood oxygen level), apnea, respiratory issues, cardiac problems, neurological problems as well as an increased chance of long-term health

Infants born before 37 weeks of pregnancy are considered to be preterm. Typically, preterm infants have to be strictly monitored since they are highly susceptible to health problems like hypoxemia (low blood oxygen level), apnea, respiratory issues, cardiac problems, neurological problems as well as an increased chance of long-term health issues such as cerebral palsy, asthma and sudden infant death syndrome. One of the leading health complications in preterm infants is bradycardia - which is defined as the slower than expected heart rate, generally beating lower than 60 beats per minute. Bradycardia is often accompanied by low oxygen levels and can cause additional long term health problems in the premature infant.The implementation of a non-parametric method to predict the onset of brady- cardia is presented. This method assumes no prior knowledge of the data and uses kernel density estimation to predict the future onset of bradycardia events. The data is preprocessed, and then analyzed to detect the peaks in the ECG signals, following which different kernels are implemented to estimate the shared underlying distribu- tion of the data. The performance of the algorithm is evaluated using various metrics and the computational challenges and methods to overcome them are also discussed.
It is observed that the performance of the algorithm with regards to the kernels used are consistent with the theoretical performance of the kernel as presented in a previous work. The theoretical approach has also been automated in this work and the various implementation challenges have been addressed.
ContributorsMitra, Sinjini (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Moraffah, Bahman (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020