This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

148465-Thumbnail Image.png
Description

This project begins with an overview of the female reproductive tract microenvironment. It outlines the microenvironment of the vaginal, cervical, and endometrial epithelium and the interactions with immune cells and hormone cycles. The review also outlines the models currently used to study the female reproductive tract. The second chapter of

This project begins with an overview of the female reproductive tract microenvironment. It outlines the microenvironment of the vaginal, cervical, and endometrial epithelium and the interactions with immune cells and hormone cycles. The review also outlines the models currently used to study the female reproductive tract. The second chapter of the thesis is a study of the effects of pathogenic and commensal bacteria P. micra, F. magna, and F. nucleatum on cervical epithelial cells. This study analyzes cytotoxic effects after 24 hour infection of these bacteria. This was assessed through crystal violet staining, conventional pcr of cDNA synthesized from extracted cervical RNA, and LDH analysis. There is also an attempted biofilm assay. It was concluded that bacteria P. micra, F. magna and F. nucleatum have cytotoxic potential. This was not expected as F. magna is largely understood to be a commensal bacteria in the vaginal microbiome.

ContributorsGarza, Camryn Nicole (Author) / Plaisier, Christopher (Thesis director) / Herbst-Kralovetz, Melissa (Committee member) / School of Molecular Sciences (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

One of the identified health risk areas for human spaceflight is infectious disease, particularly involving environmental microorganisms already found on the International Space Station (ISS). In particular, bacteria belonging to the Burkholderia cepacia complex (Bcc) which can cause human disease in those who are immunocompromised, have been identified in the

One of the identified health risk areas for human spaceflight is infectious disease, particularly involving environmental microorganisms already found on the International Space Station (ISS). In particular, bacteria belonging to the Burkholderia cepacia complex (Bcc) which can cause human disease in those who are immunocompromised, have been identified in the ISS water supply. This present study characterized the effect of spaceflight analog culture conditions on Bcc to certain physiological stresses (acid and thermal as well as intracellular survival in U927 human macrophage cells). The NASA-designed Rotating Wall Vessel (RWV) bioreactor was used as the spaceflight analogue culture system in these studies to grow Bcc bacterial cells under Low Shear Modeled Microgravity (LSMMG) conditions. Results show that LSMMG culture increased the resistance of Bcc to both acid and thermal stressors, but did not alter phagocytic uptake in 2-D monolayers of human monocytes.

ContributorsVu, Christian-Alexander (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
165153-Thumbnail Image.png
Description
The current gold standard treatment for Parkinson’s Disease is levodopa, which is an orally ingested central nervous system agent that gains therapeutic efficacy after being converted into dopamine in the brain. While current methods exist to evaluate treatment efficacy and prescribe targeted therapies to prevent its premature metabolism, they do

The current gold standard treatment for Parkinson’s Disease is levodopa, which is an orally ingested central nervous system agent that gains therapeutic efficacy after being converted into dopamine in the brain. While current methods exist to evaluate treatment efficacy and prescribe targeted therapies to prevent its premature metabolism, they do not consider the presence of drug-metabolizing enzymes encoded by bacteria in our microbiome. An interspecies bacterial pathway has recently been identified that prematurely converts L-dopa to dopamine in the gut and reduces the available concentration to carry out the target effect. In this work, an untargeted, metabolomic approach was used to detect and quantify volatile metabolites produced during levodopa metabolism in E. faecalis OG1RF cultures. The compounds produced during this process serve as the direct products of bacterial drug modifications by E. faecalis that solely occur in the presence of levodopa. By employing GC-MS techniques to quantify these products, potential confirmative biomarkers can be identified that evaluate treatment efficacy across patients. The unique metabolites identified in this study hold the potential to eventually serve as biomarkers for Parkinson’s treatment efficacy and provide insight to the functional characteristics of E. faecalis levodopa metabolism across the 10 million patients of Parkinson’s Disease. In future efforts, the identity of these metabolites will be verified along with their significant association to L-dopa metabolism.
ContributorsPennington, Taylor (Author) / Smith, Barbara (Thesis director) / Eshima, Jarrett (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05