This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 21 - 30 of 231
Filtering by

Clear all filters

153405-Thumbnail Image.png
Description
Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle:

Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle: The Maximum Power Principle (MPP). The MPP posits that ecosystems, and in fact all energy systems, develop to maximize power production or the rate of energy production. I conducted theoretical and empirical investigations to test the MPP in northern wetlands.

Permafrost degradation is leading to rapid wetland formation in northern peatland ecosystems, altering the role of these ecosystems in the global carbon cycle. I reviewed the literature on the history of the MPP theory, including tracing its origins to The Second Law of Thermodynamics. To empirically test the MPP, I collected soils along a gradient of ecosystem development and: 1) quantified the rate of adenosine triphosphate (ATP) production--literally cellular energy--to test the MPP; 2) quantified greenhouse gas production (CO2, CH4, and N2O) and microbial genes that produce enzymes catalyzing greenhouse gas production, and; 3) sequenced the 16s rRNA gene from soil microbes to investigate microbial community composition across the chronosequence of wetland development. My results suggested that the MPP and other related theoretical constructs have strong potential to further inform our understanding of ecosystem development. Soil system power (ATP) decreased temporarily as the ecosystem reorganized after disturbance to rates of power production that approached pre-disturbance levels. Rates of CH4 and N2O production were higher at the newly formed bog and microbial genes involved with greenhouse gas production were strongly related to the amount of greenhouse gas produced. DNA sequencing results showed that across the chronosequence of development, the two relatively mature ecosystems--the peatland forest ecosystem prior to permafrost degradation and the oldest bog--were more similar to one another than to the intermediate, less mature bog. Collectively, my results suggest that ecosystem age, rather than ecosystem state, was a more important driver for ecosystem structure and function.
ContributorsChapman, Eric (Author) / Childers, Daniel L. (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Hall, Sharon J (Committee member) / Turetsky, Merritt (Committee member) / Arizona State University (Publisher)
Created2015
153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
153169-Thumbnail Image.png
Description
Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to

Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to assess the effects of increased interannual precipitation variation on ecosystem functioning in grasslands. In order to address this objective, I used a combination of field experimentation and data synthesis. Precipitation manipulations on the field experiments were carried out using an automated rainfall manipulation system developed as part of this dissertation. Aboveground net primary production responses were monitored during five years. Increased precipitation coefficient of variation decreased primary production regardless of the effect of precipitation amount. Perennial-grass productivity significantly decreased while shrub productivity increased as a result of enhanced precipitation variance. Most interesting is that the effect of precipitation variability increased through time highlighting the existence of temporal lags in ecosystem response.

Further, I investigated the effect of precipitation variation on functional diversity on the same experiment and found a positive response of diversity to increased interannual precipitation variance. Functional evenness showed a similar response resulting from large changes in plant-functional type relative abundance including decreased grass and increased shrub cover while functional richness showed non-significant response. Increased functional diversity ameliorated the direct negative effects of precipitation variation on ecosystem ANPP but did not control ecosystem stability where indirect effects through the dominant plant-functional type determined ecosystem stability.

Analyses of 80 long-term data sets, where I aggregated annual productivity and precipitation data into five-year temporal windows, showed that precipitation variance had a significant effect on aboveground net primary production that is modulated by mean precipitation. Productivity increased with precipitation variation at sites where mean annual precipitation is less than 339 mm but decreased at sites where precipitation is higher than 339 mm. Mechanisms proposed to explain patterns include: differential ANPP response to precipitation among sites, contrasting legacy effects and soil water distribution.

Finally, increased precipitation variance may impact global grasslands affecting plant-functional types in different ways that may lead to state changes, increased erosion and decreased stability that can in turn limit the services provided by these valuable ecosystems.
ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo E. (Thesis advisor) / Childers, Daniel (Committee member) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Wu, Jingle (Committee member) / Arizona State University (Publisher)
Created2014
153351-Thumbnail Image.png
Description

Humans have dramatically increased phosphorus (P) availability in terrestrial and aquatic ecosystems. As P is often a limiting nutrient of primary production, changes in its availability can have dramatic effects on ecosystem processes. I examined the effects of calcium carbonate (CaCO3) deposition, which can lower P concentrations via coprecipitation of

Humans have dramatically increased phosphorus (P) availability in terrestrial and aquatic ecosystems. As P is often a limiting nutrient of primary production, changes in its availability can have dramatic effects on ecosystem processes. I examined the effects of calcium carbonate (CaCO3) deposition, which can lower P concentrations via coprecipitation of phosphate, on P availability in two systems: streams in the Huachuca Mountains, Arizona, and a stream, Río Mesquites, in Cuatro Ciénegas, México. Calcium carbonate forms as travertine in the former and within the microbialites of the latter. Despite these differences, CaCO3 deposition led to lowered P availability in both systems. By analyzing a three-year dataset of water chemistry from the Huachuca Mountain streams, I determined that P concentrations were negatively related to CaCO3 deposition rates. I also discovered that CaCO3 was positively correlated with nitrogen concentrations, suggesting that the stoichiometric effect of CaCO3 deposition on nutrient availability is due not only to coprecipitation of phosphate, but also to P-related constraints on biotic nitrogen uptake. Building from these observations, bioassays of nutrient limitation of periphyton growth suggest that P limitation is more prevalent in streams with active CaCO3 deposition than those without. Furthermore, when I experimentally reduced rates of CaCO3 deposition within one of the streams by partial light-exclusion, areal P uptake lengths decreased, periphyton P content and growth increased, and periphyton nutrient limitation by P decreased. In Río Mesquites, CaCO3 deposition was also associated with P limitation of microbial growth. There, I investigated the consequences of reductions in CaCO3 deposition with several methods. Calcium removal led to increased concentrations of P in the microbial biomass while light reductions decreased microbial biomass and chemical inhibition had no effect. These results suggest that CaCO3 deposition in microbialites does limit biological uptake of P, that photoautotrophs play an important role in nutrient acquisition, and, combined with other experimental observations, that sulfate reduction may support CaCO3 deposition in the microbialite communities of Río Mesquites. Overall, my results suggest that the effects of CaCO3 deposition on P availability are general and this process should be considered when managing nutrient flows across aquatic ecosystems.

ContributorsCorman, Jessica R. (Author) / Elser, James J (Thesis advisor) / Anbar, Ariel D (Committee member) / Childers, Daniel L. (Committee member) / Grimm, Nancy (Committee member) / Souza, Valeria (Committee member) / Arizona State University (Publisher)
Created2015
153267-Thumbnail Image.png
Description
In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent,

In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent, Diorhabda carinulata, and riparian restoration.

During 2013 and 2014, vegetation and herpetofauna were monitored at 21 riparian locations along the Virgin River via trapping and visual encounter surveys. Study sites were divided into four stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence of restoration activities: Tam, Tam-Pros, Tam-Pop/Sal, and Restored Tam-Pop/Sal. Restoration activities consisted of mechanical removal of non-native trees, transplanting native trees, and introduction of water flow. All sites were affected by biological control. I predicted that herpetofauna abundance would vary between stand types and that herpetofauna abundance would be greatest in Restored Tam-Pop/Sal sites due to increased habitat openness and variation following restoration efforts.

Results from trapping indicated that Restored Tam-Pop/Sal sites had three times more total lizard and eight times more Sceloporus uniformis captures than other stand types. Anaxyrus woodhousii abundance was greatest in Tam-Pop/Sal and Restored Tam-Pop/Sal sites. Visual encounter surveys indicated that herpetofauna abundance was greatest in the Restored Tam-Pop/Sal site compared to the adjacent Unrestored Tam-Pop/Sal site. Habitat variables were reduced to six components using a principle component analysis and significant differences were detected among stand types. Restored Tam-Pop/Sal sites were most similar to Tam-Pop/Sal sites. S. uniformis were positively associated with large woody debris and high densities of Populus, Salix, and large diameter Prosopis.

Restored Tam-Pop/Sal sites likely supported higher abundances of herpetofauna, as these areas exhibited greater habitat heterogeneity. Restoration activities created a mosaic habitat by reducing canopy cover and increasing native tree density and surface water. Natural resource managers should consider implementing additional restoration efforts following biological control when attempting to restore riparian areas dominated by Tamarix and other non-native trees.
ContributorsMosher, Kent (Author) / Bateman, Heather L (Thesis advisor) / Stromberg, Juliet C. (Committee member) / Miller, William H. (Committee member) / Arizona State University (Publisher)
Created2014
150168-Thumbnail Image.png
Description
Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation

Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation to grow a fungus that, in turn, serves as food for the colony. Fungal growth rates and colony worker production are interdependent, regulated by nutritional and behavioral feedbacks. Fungal growth and quality are directly affected by worker foraging decisions, while worker production is, in turn, dependent on the amount and condition of the fungus. In this dissertation, I first characterized the growth relationship between the workers and the fungus of the desert leafcutter ant Acromyrmex versicolor during early stages of colony development, from colony foundation by groups of queens through the beginnings of exponential growth. I found that this relationship undergoes a period of slow growth and instability when workers first emerge, and then becomes allometrically positive. I then evaluated how mass and element ratios of resources collected by the ants are translated into fungus and worker population growth, and refuse, finding that colony digestive efficiency is comparable to digestive efficiencies of other herbivorous insects and ruminants. To test how colonies behaviorally respond to perturbations of the fungus garden, I quantified activity levels and task performance of workers in colonies with either supplemented or diminished fungus gardens, and found that colonies adjusted activity and task allocation in response to the fungus garden size. Finally, to identify possible forms of nutrient limitation, I measured how colony performance was affected by changes in the relative amounts of carbohydrates, protein, and phosphorus available in the resources used to grow the fungus garden. From this experiment, I concluded that colony growth is primarily carbohydrate-limited.
ContributorsClark, Rebecca, 1981- (Author) / Fewell, Jennifer H (Thesis advisor) / Mueller, Ulrich (Committee member) / Liebig, Juergen (Committee member) / Elser, James (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2011
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
149894-Thumbnail Image.png
Description
Non-native saltcedar (Tamarix spp.) has invaded many riparian communities and is the third most abundant tree in Southwestern riparian areas. I evaluated lizard populations and microhabitat selection during 2009 and 2010 along the Virgin River in Nevada and Arizona to determine the impact of saltcedar. Along the riparian corridor, I

Non-native saltcedar (Tamarix spp.) has invaded many riparian communities and is the third most abundant tree in Southwestern riparian areas. I evaluated lizard populations and microhabitat selection during 2009 and 2010 along the Virgin River in Nevada and Arizona to determine the impact of saltcedar. Along the riparian corridor, I observed common side-blotched lizards (Uta stansburiana) within two vegetation types: monotypic non-native saltcedar stands or mixed stands of cottonwood (Populus fremontii), willow (Salix spp.), mesquite (Prosopis spp.) and saltcedar. I predicted that population parameters such as body condition, adult to hatchling ratio, abundance, and persistence would vary among vegetation types. Also, I predicted the presence of saltcedar influences how lizards utilize available habitat. Lizard population parameters were obtained from a mark-recapture study in which I captured 233 individual lizards. I examined habitat selection and habitat availability using visual encounter surveys (VES) for lizards and recorded 11 microhabitat variables where 16 lizards were found. I found no significant difference in population parameters between mixed and non-native saltcedar communities. However, population parameters were negatively correlated with canopy cover. I found that lizards selected habitat with low understory and canopy cover regardless of vegetation type. My results indicate that lizards utilize similar structural characteristics in both mixed and non-native vegetation. Understanding impacts of saltcedar on native fauna is important for managers who are tasked with control and management of this non-native species.
ContributorsNielsen, Danny (Author) / Bateman, Heather L. (Thesis advisor) / Miller, William H. (Committee member) / Sullivan, Brian K. (Committee member) / Arizona State University (Publisher)
Created2011
149766-Thumbnail Image.png
Description
Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses,

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.
ContributorsBanville, Mélanie Josianne (Author) / Bateman, Heather L (Thesis advisor) / Brady, Ward (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
149860-Thumbnail Image.png
Description
This study was designed to produce a comprehensive flora of Usery Mountain Regional Park and Pass Mountain of the Tonto National Forest. A total of 168 vascular plant species representing 46 families and 127 genera were collected or documented at this study area. Sixteen species were not native to the

This study was designed to produce a comprehensive flora of Usery Mountain Regional Park and Pass Mountain of the Tonto National Forest. A total of 168 vascular plant species representing 46 families and 127 genera were collected or documented at this study area. Sixteen species were not native to the flora of Arizona and represent 9.5% of the flora. Nevertheless, the study area does not appear to be significantly damaged or degraded in spite of its historical and current land use. The location and types of invasive species recorded in this study will assist with implementing preventative measures to prevent further spreading of certain species. The complete list of all vascular species recorded in this study will provide a valuable tool for land management decisions and future restoration projects that may occur at this area or similar sites and invasive species control. The distribution of the saguaro (Carnegiea gigantea) population on Pass Mountain was documented through the measurement of saguaros by random sampling. ArcGIS was used to generate 50 random points for sampling the saguaro population. Analysis to determine saguaro habitat preferences based on the parameters of aspect, slope and elevation was conducted through ArcGIS. The saguaro population of Pass Mountain significantly favored the southern aspects with the highest concentration occurring in the southwest aspects at an average density of 42.66 saguaros per hectare. The large numbers of saguaros recorded in the younger size classes suggests a growing populations.
ContributorsMarshall, Laura Lee (Author) / Steele, Kelly P (Thesis advisor) / Miller, William H. (Committee member) / Alford, Eddie J (Committee member) / Arizona State University (Publisher)
Created2011