This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

149442-Thumbnail Image.png
Description

Urban ecosystems cover less than 3% of the Earth's land surface, yet more than half of the human population lives in urban areas. The process of urbanization stresses biodiversity and other ecosystem functions within and far beyond the city. To understand the mechanisms underlying observed changes in biodiversity patterns, several

Urban ecosystems cover less than 3% of the Earth's land surface, yet more than half of the human population lives in urban areas. The process of urbanization stresses biodiversity and other ecosystem functions within and far beyond the city. To understand the mechanisms underlying observed changes in biodiversity patterns, several observational and experimental studies were performed in the metropolitan area of Phoenix, Arizona, and the surrounding Sonoran Desert. The first study was comprised of seven years of arthropod monitoring using pitfall traps in common urban land-use types. This study revealed differences in community structure, diversity and abundance over time and between urban and wildland habitats. Urban habitats with high productivity had higher abundances of arthropods, but lower diversity compared to wildland habitats. Arthropod abundance in less-productive urban habitats was positively correlated with precipitation, but abundance in high-productivity urban habitats was completely decoupled from annual fluctuations in precipitation. This study showed the buffering capacity and the habitat heterogeneity of urban areas. To test the mechanisms controlling community diversity and structure in urban areas, a major field experiment was initiated. Productivity of the native shrub Encelia farinosa and bird predation of associated arthropods were manipulated to test whether bottom-up or top-down forces were more important in urban habitats compared to wildland habitats. Abundance, richness and similarity were monitored, revealing clear differences between urban and wildland habitats. An unusually cold and dry first season had a negative effect on plant growth and arthropod abundance. Plants in urban habitats were relatively unaffected by the low temperature. An increase in arthropod abundance with water availability indicated bottom-up forces in wildland habitats, whereas results from bird exclusions suggested that bird predation may not be as prominent in cities as previously thought. In contrast to the pitfall study, arthropod abundance was lower in urban habitats. A second field experiment testing the sheltering effect of urban structures demonstrated that reduced wind speed is an important factor facilitating plant growth in urban areas. A mathematical model incorporating wind, water and temperature demonstrated that urban habitats may be more robust than wildland habitats, supporting the empirical results.

ContributorsBang, Christofer (Author) / Faeth, Stanley H. (Thesis advisor) / Sabo, John L. (Thesis advisor) / Grimm, Nancy (Committee member) / Anderies, J. Marty (Committee member) / Warren, Paige S. (Committee member) / Arizona State University (Publisher)
Created2010
149470-Thumbnail Image.png
Description
The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However,

The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However, pikas are commonly regarded as pests, and are heavily poisoned throughout their range. The underlying assumption of eradication programs is that eliminating pikas will improve rangeland quality and decrease soil erosion. This dissertation explores the link between plateau pikas and the alpine meadow ecosystem in Qinghai Province, PRC. This research uses both comparative field studies and theoretical modeling to clarify the role of pika disturbance. Specifically, these studies quantify the impact of pikas on nutrient cycling (via nutrient concentrations of vegetation and soil), hydrology (via water infiltration), local landscape properties (via spatial pattern description), and vascular plant communities (via species richness and composition). The competitive relationship between livestock and pikas is examined with a mathematical model. Results of this research indicate that pika colonies have both local and community level effects on water infiltration and plant species richness. A major contribution of pika disturbance is increased spatial heterogeneity, which likely underlies differences in the plant community. These findings suggest that the positive impact of plateau pikas on rangeland resources has been undervalued. In concurrence with other studies, this work concludes that plateau pikas provide valuable ecosystem services on the Tibetan Plateau.
ContributorsHogan, Brigitte Wieshofer (Author) / Smith, Andrew T. (Thesis advisor) / Anderies, J. Marty (Committee member) / Briggs, John M. (Committee member) / Stromberg, Juliet C. (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2010