This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

149860-Thumbnail Image.png
Description
This study was designed to produce a comprehensive flora of Usery Mountain Regional Park and Pass Mountain of the Tonto National Forest. A total of 168 vascular plant species representing 46 families and 127 genera were collected or documented at this study area. Sixteen species were not native to the

This study was designed to produce a comprehensive flora of Usery Mountain Regional Park and Pass Mountain of the Tonto National Forest. A total of 168 vascular plant species representing 46 families and 127 genera were collected or documented at this study area. Sixteen species were not native to the flora of Arizona and represent 9.5% of the flora. Nevertheless, the study area does not appear to be significantly damaged or degraded in spite of its historical and current land use. The location and types of invasive species recorded in this study will assist with implementing preventative measures to prevent further spreading of certain species. The complete list of all vascular species recorded in this study will provide a valuable tool for land management decisions and future restoration projects that may occur at this area or similar sites and invasive species control. The distribution of the saguaro (Carnegiea gigantea) population on Pass Mountain was documented through the measurement of saguaros by random sampling. ArcGIS was used to generate 50 random points for sampling the saguaro population. Analysis to determine saguaro habitat preferences based on the parameters of aspect, slope and elevation was conducted through ArcGIS. The saguaro population of Pass Mountain significantly favored the southern aspects with the highest concentration occurring in the southwest aspects at an average density of 42.66 saguaros per hectare. The large numbers of saguaros recorded in the younger size classes suggests a growing populations.
ContributorsMarshall, Laura Lee (Author) / Steele, Kelly P (Thesis advisor) / Miller, William H. (Committee member) / Alford, Eddie J (Committee member) / Arizona State University (Publisher)
Created2011
171536-Thumbnail Image.png
Description
More people live in cities or metropolitan areas than ever before, which encompass many types of urbanization. These areas are culturally diverse and densely populated heterogeneous landscapes that are shaped by socio-ecological patterns. Cities support human and wildlife populations that are influenced indirectly and directly by human decisions. This process

More people live in cities or metropolitan areas than ever before, which encompass many types of urbanization. These areas are culturally diverse and densely populated heterogeneous landscapes that are shaped by socio-ecological patterns. Cities support human and wildlife populations that are influenced indirectly and directly by human decisions. This process can result in unequal access to environmental services and accessible green spaces. Additionally, biodiversity distribution is influenced by human decisions. Although neighborhood income can drive biodiversity in metropolitan areas (i.e., the ‘luxury effect’), other socio-cultural factors may also influence the presence and abundance of wildlife beyond simple measures of wealth. To understand how additional social factors shape distributions of wildlife, I ask, are patterns of wildlife distribution associated with neighborhood ethnicity, in addition to income and ecological landscape characteristics within metropolitan areas? Utilizing data from 38 wildlife cameras deployed in neighborhood public parks and non-built spaces in metro Phoenix, AZ (USA), I estimated occupancy and activity patterns of coyotes (Canis latrans), desert cottontail rabbits (Sylvilagus audubonii), and domestic cats (Felis catus) across gradients of median household income and neighborhood ethnicity, estimated by the proportion of Latinx residents. Neighborhood ethnicity appeared in the top models for all species, and neighborhood % of Latinx residents was inversely associated with presence of native Sonoran Desert animals (coyotes and cottontail rabbits). Furthermore, daily activity patterns of coyotes differed in neighborhoods with higher vs. lower proportion of Latinx residents. My results suggest that socio-cultural variables beyond income are associated with wildlife distributions, and that factors associated with neighborhood ethnicity may be an informative correlate of city-wide ecological patterns. In this research, I unraveled predictive social variables and differentiated wildlife distribution across neighborhood gradients of income and ethnic composition, bringing attention to the potentially unequal distribution of mammals in cities.
ContributorsCocroft, Alexandreana (Author) / Hall, Sharon J (Thesis advisor) / Lerman, Susannah B (Committee member) / Lewis, Jesse (Committee member) / Arizona State University (Publisher)
Created2022
158407-Thumbnail Image.png
Description

Interdisciplinary research has highlighted how social-ecological dynamics drive the structure and function of the urban landscape across multiple scales. Land management decisions operate across various levels, from individuals in their backyard to local municipalities and broader political-economic forces. These decisions then scale up and down across the landscape to influence

Interdisciplinary research has highlighted how social-ecological dynamics drive the structure and function of the urban landscape across multiple scales. Land management decisions operate across various levels, from individuals in their backyard to local municipalities and broader political-economic forces. These decisions then scale up and down across the landscape to influence ecological functioning, such as the provisioning of biodiversity. Likewise, people are influenced by, and respond to, their environment. However, there is a lack of integrated research, especially research that considers the spatial and temporal complexities of social-ecological dynamics, to fully understand how people influence ecosystems or how the resulting landscape in turn influences human decision making, attitudes, and well-being.

My dissertation connects these interdisciplinary themes to examine three questions linked by their investigation of the interactions between people and biodiversity: (1) How do the social and spatial patterns within an arid city affect people’s attitudes about their regional desert environment? (2) How are novel communities in cities assembled given the social-ecological dynamics that influence the processes that structure ecological communities? (3) How can we reposition bird species traits into a conservation framework that explains the complexity of the interactions between people and urban bird communities? I found that social-ecological dynamics between people, the environment, and biodiversity are tightly interwoven in urban ecosystems. The regional desert environment shapes people’s attitudes along spatial and social configurations, which holds implications for yard management decisions. Multi-scalar management decisions then influence biodiversity throughout cities, which shifts public perceptions of urban nature. Overall, my research acts as a bridge between social and ecological sciences to theoretically and empirically integrate research focused on biodiversity conservation in complex, social-ecological systems. My goal as a scholar is to understand the balance between social and ecological implications of landscape change to support human well-being and promote biodiversity conservation.

ContributorsAndrade, Riley (Author) / Franklin, Janet (Thesis advisor) / Larson, Kelli L (Thesis advisor) / Hondula, David M. (Committee member) / Lerman, Susannah B (Committee member) / Arizona State University (Publisher)
Created2020