This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 9 of 9
Filtering by

Clear all filters

161630-Thumbnail Image.png
Description
There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve

There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve outdoor irrigation management. With the goal of reducing outdoor water use and advancing the general knowledge of water fluxes in urban parks, this study explores water conservation opportunities in an arid city through observations and modeling.Most urban parks in Phoenix consist of a mosaic of turfgrass and trees which receive scheduled maintenance, fertilization and watering through sprinkler or flood irrigation. In this study, the effects that different watering practices, turfgrass management and soil conditions have on soil moisture observations in urban parks are evaluated. Soil moisture stations were deployed at three parks with stations at control plots with no compost application and compost treated sites with either a once or twice per year application instead of traditional fertilizer. An eddy covariance system was installed at a park to help quantify water losses and water, energy and carbon fluxes between the turfgrass and atmosphere. Additional meteorological observations are provided through a network of weather stations. The assessment covers over one year of observations, including the period of turfgrass growth in the warm season, and a period of dormancy during the cool season. The observations were used to setup and test a plot-scale soil water balance model to simulate changes in daily soil moisture in response to irrigation, precipitation and evapotranspiration demand for each park. Combining modeling and observations of climate-soil-vegetation processes, I provide guidance on irrigation schedules and management that could help minimize water losses while supporting turfgrass health in desert urban parks. The irrigation scenarios suggest that water savings of at least 18% can be achieved at the three sites. While the application of compost treatment to study plots did not show clear improvements in soil water retention when compared to the control plots, this study shows that water conservation can be promoted while maintaining low plant water stress.
ContributorsKindler, Mercedes (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2021
168509-Thumbnail Image.png
Description
Observational evidence is mounting on the reduction of winter precipitation and an earlier snowmelt in the southwestern United States. It is unclear, however, how these changes, along with forest thinning, will impact water supplies due to complexities in the precipitation-streamflow transformation. In this study, I use the Triangulated Irregular Network-based

Observational evidence is mounting on the reduction of winter precipitation and an earlier snowmelt in the southwestern United States. It is unclear, however, how these changes, along with forest thinning, will impact water supplies due to complexities in the precipitation-streamflow transformation. In this study, I use the Triangulated Irregular Network-based Real-time Integrated Basin Simulator (tRIBS) to provide insight into the independent and combined effects of climate change and forest cover reduction on the hydrologic response in the Beaver Creek (~1100 km2) of central Arizona. Prior to these experiments, confidence in the hydrologic model is established using snow observations at two stations, two nested streamflow gauges, and estimates of spatially-distributed snow water equivalent over a long-term period (water years 2003-2018). Model forcings were prepared using station observations and radar rainfall estimates in combination with downscaling and bias correction techniques that account for the orographic controls on air temperature and precipitation. Model confidence building showed that tRIBS is able to capture well the variation in snow cover and streamflow during wet and dry years in the 16 year simulation period. The results from this study show that the climate change experiments increased average annual streamflow by 1.5% at +1°C of warming. However, a 28% decrease in streamflow occurs by +6°C of warming as evapotranspiration (ET) increases by 10%. Forest thinning shifted the warming threshold where ET increases reduce streamflow yield until +4°C of warming as compared to no forest thinning when this threshold occurs at +2°C. An average increase in streamflow of 12% occurs after forest thinning across all climate scenarios. While the snow covered area is unaffected by thinning, the volume of snowmelt increases and is linked to the higher water yield. These findings indicate that water managers can expect decreases in streamflow due to climate change but may be able to offset these impacts up to a warming threshold by thinning forested areas within the Beaver Creek.
ContributorsCederstrom, Charles Joshua (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Svoma, Bohumil (Committee member) / Arizona State University (Publisher)
Created2021
171584-Thumbnail Image.png
Description
Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if

Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if the predicted high degree of interannual precipitation variability across the basin could overwhelm the impacts of future warming and how this might vary in space. Climate change will also intensify forest disturbances (wildfire, mortality, thinning), which can significantly impact water resources. These impacts are not constrained, given findings of mixed post-disturbance hydrologic responses. Process-based models like the Variable Infiltration Capacity (VIC) platform can quantitatively predict hydrologic behaviors of these complex systems. However, barriers limit their effectiveness to inform decision making: (1) simulations generate enormous data volumes, (2) outputs are inaccessible to managers, and (3) modeling is not transparent. I designed a stakeholder engagement and VIC modeling process to overcome these challenges, and developed a web-based tool, VIC-Explorer, to “open the black box” of my efforts. Meteorological data was from downscaled historical (1950-2005) and future projections (2006-2099) of eight climate models that best represent climatology under low- and high- emissions. I used two modeling methods: (1) a “top-down” approach to assess an “envelope of hydrologic possibility” under the 16 climate futures; and (2) a “bottom-up” evaluation of hydrology in two climates from the ensemble representing “Hot/Dry” and “Warm/Wet” futures. For the latter assessment, I modified land cover using projections of a LULC model and applied more drastic forest disturbances. I consulted water managers to expand the legitimacy of the research. Results showed Far-Future (2066-2095) basin-wide mean annual streamflow decline (relative to 1976-2005; ensemble median trends of -5% to -25%), attributed to warming that diminished spring snowfall and melt and year-round increased soil evaporation from the Upper Basin, and overall precipitation declines in the Lower Basin. Forest disturbances partially offset warming effects (basin-wide mean annual streamflow up to 12% larger than without disturbance). Results are available via VIC-Explorer, which includes documentation and guided analyses to ensure findings are interpreted appropriately for decision-making.
ContributorsWhitney, Kristen Marie (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Whipple, Kelin X (Committee member) / White, Dave D (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2022
171945-Thumbnail Image.png
Description
Integrated water resources management for flood control, water distribution, conservation, and food security require understanding hydrological spatial and temporal trends. Proliferation of monitoring and sensor data has boosted data-driven simulation and evaluation. Developing data-driven models for such physical process-related phenomena, and meaningful interpretability therein, necessitates an inventive methodology. In this

Integrated water resources management for flood control, water distribution, conservation, and food security require understanding hydrological spatial and temporal trends. Proliferation of monitoring and sensor data has boosted data-driven simulation and evaluation. Developing data-driven models for such physical process-related phenomena, and meaningful interpretability therein, necessitates an inventive methodology. In this dissertation, I developed time series and deep learning model that connected rainfall, runoff, and fish species abundances. I also investigated the underlying explainabilty for hydrological processes and impacts on fish species. First, I created a streamflow simulation model using computer vision and natural language processing as an alternative to physical-based routing. I tested it on seven US river network sections and showed it outperformed time series models, deep learning baselines, and novel variants. In addition, my model explained flow routing without physical parameter input or time-consuming calibration. On the basis of this model, I expanded it from accepting dispersed spatial inputs to adopting comprehensive 2D grid data. I constructed a spatial-temporal deep leaning model for rainfall-runoff simulation. I tested it against a semi-distributed hydrological model and found superior results. Furthermore, I investigated the potential interpretability for rainfall-runoff process in both space and time. To understand impacts of flow variation on fish species, I applied a frequency based model framework for long term time series data simulation. First, I discovered that timing of hydrological anomalies was as crucial as their size. Flooding and drought, when properly timed, were both linked with excellent fishing productivity. To identify responses of various fish trait groups, I used this model to assess mitigated hydrological variation by fish attributes. Longitudinal migratory fish species were more impacted by flow variance, whereas migratory strategy species reacted in the same direction but to various degrees. Finally, I investigated future fish population changes under alternative design flow scenarios and showed that a protracted low flow with a powerful, on-time flood pulse would benefit fish. In my dissertation, I constructed three data-driven models that link the hydrological cycle to the stream environment and give insight into the underlying physical process, which is vital for quantitative, efficient, and integrated water resource management.
ContributorsDeng, Qi (Author) / Sabo, John (Thesis advisor) / Grimm, Nancy (Thesis advisor) / Ganguly, Auroop (Committee member) / Li, Wenwen (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2022
187845-Thumbnail Image.png
Description
The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection

The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection and modeling techniques to assess key hydrologic variables in drylands, including irrigated water use, streamflow, and snowpack conditions, answering following research questions that also have broad societal implications: (1) What are the individual and combined effects of future climate and land use change on irrigation water use (IWU) in the Phoenix Metropolitan Area (PMA)?; (2) How can temporal changes in streamflow and the impacts of flash flooding be detected in dryland rivers?; and (3) What are the impacts of rainfall-snow partitioning on future snowpack and streamflow in the Colorado River Basin (CRB)? Firstly, I conducted a scenario modeling using the Variable Infiltration Capacity (VIC) model under future climate and land use change scenarios. Results showed that future IWU will change from -0.5% to +6.8% in the far future (2071-2100) relative to the historical period (1981-2010). Secondly, I employed CubeSat imagery to map streamflow presence in the Hassayampa River of Arizona, finding that the imaging capacity of CubeSats enabled the detection of ephemeral flow events using the surface reflectance of the near-infrared (NIR) band. Results showed that 12% of reaches were classified as intermittent, with the remaining as ephemeral. Finally, I implemented a physically-based rainfall-snow partitioning scheme in the VIC model that estimates snowfall fraction from the wet-bulb temperature using a sigmoid function. The new scheme predicts more significant declines in snowfall (-8 to -11%) and streamflow (-14 to -27%) by the end of the 21st century over the CRB, relative to historical conditions. Overall, this dissertation demonstrates how innovative technologies can enhance the understanding of dryland hydrologic changes and inform decision-making of water resources management. The findings offer important insights for policymakers, water managers, and researchers who seek to ensure water resources sustainability under the effects of climate and land use change.
ContributorsWang, Zhaocheng (Author) / Vivoni, Enrique R (Thesis advisor) / White, Dave D (Committee member) / Mascaro, Giuseppe (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2023
154048-Thumbnail Image.png
Description
Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model
ContributorsKhatavkar, Puneet N (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2015
154963-Thumbnail Image.png
Description
Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land surface processes and land-atmosphere interactions are not fully understood in mountain regions. This thesis investigates land surface processes and their

Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land surface processes and land-atmosphere interactions are not fully understood in mountain regions. This thesis investigates land surface processes and their impact on convective precipitation by conducting numerical modeling experiments at multiple scales over the North American Monsoon (NAM) region. Specifically, the following scientific questions are addressed: (1) how do land surface conditions evolve during the monsoon season, and what are their main controls?, (2) how do the diurnal cycles of surface energy fluxes vary during the monsoon season for the major ecosystems?, and (3) what are the impacts of surface soil moisture and vegetation condition on convective precipitation?

Hydrologic simulation using the TIN-based Real-time Integrated Basin Simulator (tRIBS) is firstly carried out to examine the seasonal evolution of land surface conditions. Results reveal that the spatial heterogeneity of land surface temperature and soil moisture increases dramatically with the onset of monsoon, which is related to seasonal changes in topographic and vegetation controls. Similar results are found at regional basin scale using the uncoupled WRF-Hydro model. Meanwhile, the diurnal cycles of surface energy fluxes show large variation between the major ecosystems. Differences in both the peak magnitude and peak timing of plant transpiration induce mesoscale heterogeneity in land surface conditions. Lastly, this dissertation examines the upscale effect of land surface heterogeneity on atmospheric condition through fully-coupled WRF-Hydro simulations. A series of process-based experiments were conducted to identify the pathways of soil moisture-rainfall feedback mechanism over the NAM region. While modeling experiments confirm the existence of positive soil moisture/vegetation-rainfall feedback, their exact pathways are slightly different. Interactions between soil moisture, vegetation cover, and rainfall through a series of land surface and atmospheric boundary layer processes highlight the strong land-atmosphere coupling in the NAM region, and have important implications on convective rainfall prediction. Overall, this dissertation advances the study of complex land surface processes over the NAM region, and made important contributions in linking complex hydrologic, ecologic and atmospheric processes through numerical modeling.
ContributorsXiang, Tiantian (Author) / Vivoni, Enrique R (Thesis advisor) / Gochis, David J (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2016
155737-Thumbnail Image.png
Description
Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of

Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of hydro-climatic impacts on water resource management in this region. This

thesis is devoted to understanding the impact of land use and land cover (LULC) changes

on the local and regional hydroclimate, with the goal to address urban planning issues

and provide guidance for sustainable development.

In this study, three densely populated urban areas, viz. Phoenix, Las Vegas and

Denver in the CRB are selected to capture the various dimensions of the impacts of land

use changes on the regional hydroclimate in the entire CRB. Weather Research and

Forecast (WRF) model, incorporating the latest urban modeling system, is adopted for

regional climate modeling. Two major types of urban LULC changes are studied in this

Thesis: (1) incorporation of urban trees with their radiative cooling effect, tested in

Phoenix metropolitan, and (2) projected urban expansion in 2100 obtained from

Integrated Climate and Land Use Scenarios (ICLUS) developed by the US

Environmental Protection Agency for all three cities.

The results demonstrated prominent nocturnal cooling effect of due to radiative

shading effect of the urban trees for Phoenix reducing urban surface and air temperature

by about 2~9 °C and 1~5 °C respectively and increasing relative humidity by 10~20%

during an mean diurnal cycle. The simulations of urban growth in CRB demonstratedii

nocturnal warming of about 0.36 °C, 1.07 °C, and 0.94 °C 2m-air temperature and

comparatively insignificant change in daytime temperature, with the thermal environment

of Denver being the most sensitive the urban growth. The urban hydroclimatic study

carried out in the thesis assists in identifying both context specific and generalizable

relationships, patterns among the cities, and is expected to facilitate urban planning and

management in local (cities) and regional scales.
ContributorsUpreti, Ruby (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique R. (Committee member) / Mascaro, Giuseppe (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2017
156100-Thumbnail Image.png
Description
Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is

Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain large areas (10s to 100s km2). In this dissertation, I study the interactions between surface water and groundwater via ephemeral channels in a first-order watershed located on an arid piedmont slope within the Jornada Experimental Range (JER) in the Chihuahuan Desert. To achieve this, I utilize a combination of high-resolution observations and computer simulations using a modified hydrologic model to quantify groundwater recharge and shed light on the geomorphic and ecologic processes that affect the rate of recharge. Observational results indicate that runoff generated within the piedmont slope contributes significantly to deep percolation. During the short-term (6 yr) study period, we estimated 385 mm of total percolation, 62 mm/year, or a ratio of percolation to rainfall of 0.25. Based on the instrument network, we identified that percolation occurs inside channel areas when these receive overland sheetflow from hillslopes. By utilizing a modified version of the hydrologic model, TIN-based Real-time Integrated Basin Simulator (tRIBS), that was calibrated and validated using the observational dataset, I quantified the effects of changing watershed properties on groundwater recharge. Distributed model simulations quantify how deep percolation is produced during the streamflow generation process, and indicate that it plays a significant role in moderating the production of streamflow. Sensitivity analyses reveal that hillslope properties control the amount of rainfall necessary to initiate percolation while channel properties control the partitioning of hillslope runoff into streamflow and deep percolation. Synthetic vegetation experiments show that woody plant encroachment leads to increases in both deep percolation and streamflow. Further woody plant encroachment may result in the unexpected enhancement of dryland aquifer sustainability.
ContributorsSchreiner-McGraw, Adam P (Author) / Vivoni, Enrique R. (Thesis advisor) / Whipple, Kelin X. (Committee member) / Mascaro, Giuseppe (Committee member) / Throop, Heather L. (Committee member) / Sala, Osvaldo E. (Committee member) / Arizona State University (Publisher)
Created2017